173 2438 5004
KEROS加密芯片——品牌直销 | 免费样品 | 技术支持
当前位置:网站首页 > 资讯中心 正文 资讯中心

stm32中USART2是怎么传输数据的

keros@mark 2023-03-18 资讯中心

stm32怎么将usart

在USART的发送端有2个寄存器,一个是程序可以看到的USART_DR寄存器,另一个是程序看不到的移位寄存器,对应USART数据发送有两个标志,一个是TXE=发送数据寄存器空,另一个是TC=发送结束。

当USART_DR中的数据传送到移位寄存器后,TXE被设置,此时移位寄存器开始向TX信号线按位传输数据,但因为TDR已经变空,程序可以把下一个要发送的字节(操作USART_DR)写入TDR中,而不必等到移位寄存器中所有位发送结束,所有位发送结束时(送出停止位后)硬件会设置TC标志。

另一方面,在刚刚初始化好USART还没有发送任何数据时,也会有TXE标志,因为这时发送数据寄存器是空的。TXEIE和TCIE的意义很简单,TXEIE允许在TXE标志为'1'时产生中断,而TCIE允许在TC标志为'1'时产生中断。

至于什么时候使用哪个标志,需要根据你的需要自己决定。但我认为TXE允许程序有更充裕的时间填写TDR寄存器,保证发送的数据流不间断。TC可以让程序知道发送结束的确切时间,有利于程序控制外部数据流的时序。

TXE--写寄存器DR清零

RXNE--读寄存器DR清零,也可软件手动清零

TC-- 读/写寄存器DR清零,也可软件手动清零

先说TC。即Transmission Complete。发送一个字节后才进入中断,这里称为“发送后中断”。和原来8051的TI方式一样,都是发送后才进中断,需要在发送函数中先发送一个字节触发中断。发送函数如下

/*******

功能:中断方式发送字符串.采用判断TC的方式.即 判断 发送后中断 位.

输入:字符串的首地址

输出:无

*******/

void USART_SendDataString( u8 *pData )

{

pDataByte = pData;

USART_ClearFlag(USART1, USART_FLAG_TC);//清除传输完成标志位,否则可能会丢失第1个字节的数据.网友提供.

USART_SendData(USART1, *(pDataByte++) ); //必须要++,不然会把第一个字符t发送两次

}

中断处理函数如下

/********

* Function Name : USART1_IRQHandler

* Description : This function handles USART1 global interrupt request.

* Input : None

* Output : None

* Return : None

*********/

void USART1_IRQHandler(void)

{

if( USART_GetITStatus(USART1, USART_IT_TC) == SET )

{

if( *pDataByte == '\0' )//TC需要 读SR+写DR 方可清0,当发送到最后,到'\0'的时候用个if判断关掉

USART_ClearFlag(USART1, USART_FLAG_TC);//不然TC一直是set, TCIE也是打开的,导致会不停进入中断. clear掉即可,不用关掉TCIE

else

USART_SendData(USART1, *pDataByte++ );

}

}

其中u8 *pDataByte;是一个外部指针变量

在中断处理程序中,发送完该字符串后,不用关闭TC的中断使能TCIE,只需要清掉标志位TC;这样就能避免TC == SET 导致反复进入中断了。

void USART_Config()

{

........................................

USART_ITConfig(USART1, USART_IT_TC, ENABLE);//Tramsimssion Complete后,才产生中断. 开TC中断必须放在这里,否则还是会丢失第一字节

USART_Cmd(USART1, ENABLE); //使能USART1

}

.....................................................................

再说判断TXE。即Tx DR Empty,发送寄存器空。当使能TXEIE后,只要Tx DR空了,就会产生中断。所以,发送完字符串后必须关掉,否则会导致重复进入中断。这也是和TC不同之处。

发送函数如下:

/*******

功能:中断方式发送字符串.采用判断TC的方式.即 判断 发送后中断 位.

输入:字符串的首地址

输出:无

*******/

void USART_SendDataString( u8 *pData )

{

pDataByte = pData;

USART_ITConfig(USART1, USART_IT_TXE, ENABLE);//只要发送寄存器为空,就会一直有中断,因此,要是不发送数据时,把发送中断关闭,只在开始发送时,才打开。

}

中断处理函数如下:

/********

* Function Name : USART1_IRQHandler

* Description : This function handles USART1 global interrupt request.

* Input : None

* Output : None

* Return : None

********/

void USART1_IRQHandler(void)

{

if( USART_GetITStatus(USART1, USART_IT_TXE) == SET )

{

if( *pDataByte == '\0' )//待发送的字节发到末尾NULL了

USART_ITConfig(USART1, USART_IT_TXE, DISABLE);//因为是 发送寄存器空 的中断,所以发完字符串后必须关掉,否则只要空了,就会进中断

else

USART_SendData(USART1, *pDataByte++ );

}

}

在串口初始化函数中就不用打开TXE的中断了(是在发送函数中打开的)

stm32板的usart2设置与usart1有什么区别啊

下图是STM32 101系列的总线图。下面以此为例分析其差异:

(若是其它系列需要参考其它系列的总线图)

其差异有:

所连接的外部IO口不同。因此需要初始化的IO口是有差异的。同时需要注意的是你的硬件所用引脚是否连接到了正确的IO口上,而同一个USART可能有不同的IO口可以复用,因此需要注意USART和IO口之间的映射关系。

所连接的总线不同,USART1连接到了APB2,而USART2连接到了APB1,因此,在初始化时钟时需要注意这方面。

战舰V3 USART1、USART2、UASRT3、UART4、UART5串口配置

在STM32中UART和USART是不相同的,在官方的文档中,大部分配置的都是USART2和UASRT3,对于UART4和UART5却很少有人配置,由于最近在集成项目,所以要用到多种串口,所以索性就配置了UART4和UART5

例如:

简单区分同步和异步就是看通信时需不需要对外提供时钟输出,我们平时用的串口通信基本都是UART。

USART支持同步模式,因此USART需要同步时钟信号USART_CK(如STM32 单片机),通常情况同步信号很少使用,因此一般的单片机UART和USART使用方式是一样的,都使用异步模式。

UART需要固定的波特率,就是说两位数据的间隔要相等。 UART总线是异步串口,一般由波特率产生器(产生的波特率等于传输波特率的16倍)、UART接收器、UART发送器组成,硬件上有两根线,一根用于发送,一根用于接收。 显然,如果用通用IO口模拟UART总线,则需一个输入口,一个输出口。

UART是一个并行输入成为串行输出的芯片,通常集成在主板上,多数是16550AFN芯片。因为计算机内部采用并行数据,不能直接把数据发到Modem,必须经过UART整理才能进行异步传输,其过程为:CPU先把准备写入串行设备的数据放到UART的寄存器(临时内存块)中,再通过FIFO(First Input First Output,先入先出队列)传送到串行设备,若是没有FIFO,信息将变得杂乱无章,不可能传送到Modem。

作为接口的一部分,UART还提供以下功能:将由计算机内部传送过来的并行数据转换为输出的串行数据流。将计算机外部来的串行数据转换为字节,供计算机内部使用并行数据的器件使用。在输出的串行数据流中加入奇偶校验位,并对从外部接收的数据流进行奇偶校验。在输出数据流中加入启停标记,并从接收数据流中删除启停标记。处理由键盘或鼠标发出的中断信号(键盘和鼠标也是串行设备)。可以处理计算机与外部串行设备的同步管理问题。

USART收发模块一般分为三大部分:时钟发生器、数据发送器和接收器。控制寄存器为所有的模块共享。时钟发生器由同步逻辑电路(在同步从模式下由外部时钟输入驱动)和波特率发生器组成。发送时钟引脚XCK仅用于同步发送模式下,发送器部分由一个单独的写入缓冲器(发送UDR)、一个串行移位寄存器、校验位发生器和用于处理不同浈结构的控制逻辑电路构成。使用写入缓冲器,实现了连续发送多浈数据无延时的通信。接收器是USART模块最复杂的部分,最主要的是时钟和数据接收单元。数据接收单元用作异步数据的接收。除了接收单元,接收器还包括校验位校验器、控制逻辑、移位寄存器和两级接收缓冲器(接收UDR)。接收器支持与发送器相同的帧结构,同时支持桢错误、数据溢出和校验错误的检测。USART是一个全双工通用同步/异步串行收发模块,该接口是一个高度灵活的串行通信设备。

综上可以看出,USART相对UART来说是在异步通信的基础上还有同步的功能,USART能够提供主动时钟。

先来看一下引脚图

[图片上传失败...(image-5879a4-1545558491497)]

可以看到USART1、USART2、UASRT3、UART4、UART5对应的引脚,下面我们就来配置!

初始化程序:

初始化程序:

初始化程序:

初始化程序:

初始化程序:

对比一下不难发现UASRT的初始化和UART的初始化几乎相同!!!!!

STM32上的USART2_CTS和USART2_RTS是什么,怎么用?

了解一下九针接口的引脚定义就知道了,以供参考,希望有帮助(图就免了吧...):

1 CD ← Carrier Detect 载波检测

2 RXD ← Receive Data 接收数据

3 TXD → Transmit Data 发送数据

4 DTR → Data Terminal Ready数据终端就绪

5 GND — System Ground 系统接地

6 DSR ← Data Set Ready 数据设备就绪

7 RTS → Request To Send 请求发送

8 CTS ← Clear To Send 允许发送  

9 RI → 这个好像是什么提示信号

数据方向见箭头。

stm32怎么发送和接收数据?

串口时钟使能,GPIO 时钟使能

2) 串口复位

3) GPIO 端口模式设置

4) 串口参数初始化

5) 开启中断并且初始化 NVIC(如果需要开启中断才需要这个步骤)

6) 使能串口

7) 编写中断处理函数

.串口时钟使能。串口是挂载在 APB2 下面的外设,所以使能函数为:

RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1);

2.串口复位。当外设出现异常的时候可以通过复位设置,实现该外设的复位,然后重新配置

这个外设达到让其重新工作的目的。一般在系统刚开始配置外设的时候,都会先执行复位该外

设的操作。复位的是在函数 USART_DeInit()中完成:

void USART_DeInit(USART_TypeDef* USARTx);//串口复位

比如我们要复位串口 1,方法为:

USART_DeInit(USART1); //复位串口 1

3.串口参数初始化。串口初始化是通过 USART_Init()函数实现的,

void USART_Init(USART_TypeDef* USARTx, USART_InitTypeDef* USART_InitStruct);

这个函数的第一个入口参数是指定初始化的串口标号,这里选择 USART1。

第二个入口参数是一个 USART_InitTypeDef 类型的结构体指针,这个结构体指针的成员变量用

来设置串口的一些参数。一般的实现格式为:

USART_InitStructure.USART_BaudRate = bound; //一般设置为 9600;

USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为 8 位数据格式

USART_InitStructure.USART_StopBits = USART_StopBits_1; //一个停止位

USART_InitStructure.USART_Parity = USART_Parity_No; //无奇偶校验位

USART_InitStructure.USART_HardwareFlowControl

= USART_HardwareFlowControl_None; //无硬件数据流控制

USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;

//收发模式

USART_Init(USART1, USART_InitStructure); //初始化串口

从上面的初始化格式可以看出初始化需要设置的参数为:波特率,字长,停止位,奇偶校验位,

硬件数据流控制,模式(收,发)。我们可以根据需要设置这些参数。

4.数据发送与接收。STM32 的发送与接收是通过数据寄存器 USART_DR 来实现的,这是

一个双寄存器,包含了 TDR 和 RDR。当向该寄存器写数据的时候,串口就会自动发送,当收

到数据的时候,也是存在该寄存器内。

STM32 库函数操作 USART_DR 寄存器发送数据的函数是:

void USART_SendData(USART_TypeDef* USARTx, uint16_t Data);

通过该函数向串口寄存器 USART_DR 写入一个数据。

STM32 库函数操作 USART_DR 寄存器读取串口接收到的数据的函数是:

uint16_t USART_ReceiveData(USART_TypeDef* USARTx);

通过该函数可以读取串口接受到的数据。

5.串口状态。串口的状态可以通过状态寄存器 USART_SR 读取。USART_SR 的各位描述如

这里我们关注一下两个位,第 5、6 位 RXNE 和 TC。

RXNE(读数据寄存器非空),当该位被置 1 的时候,就是提示已经有数据被接收到了,并

且可以读出来了。这时候我们要做的就是尽快去读取 USART_DR,通过读 USART_DR 可以将

该位清零,也可以向该位写 0,直接清除。

TC(发送完成),当该位被置位的时候,表示 USART_DR 内的数据已经被发送完成了。如

果设置了这个位的中断,则会产生中断。该位也有两种清零方式:1)读 USART_SR,写

USART_DR。2)直接向该位写 0。

状态寄存器的其他位我们这里就不做过多讲解,大家需要可以查看中文参考手册。

在我们固件库函数里面,读取串口状态的函数是:

FlagStatus USART_GetFlagStatus(USART_TypeDef* USARTx, uint16_t USART_FLAG);

这个函数的第二个入口参数非常关键,它是标示我们要查看串口的哪种状态,比如上面讲解的

RXNE(读数据寄存器非空)以及 TC(发送完成)。例如我们要判断读寄存器是否非空(RXNE),操

作库函数的方法是:

USART_GetFlagStatus(USART1, USART_FLAG_RXNE);

我们要判断发送是否完成(TC),操作库函数的方法是:

USART_GetFlagStatus(USART1, USART_FLAG_TC);

这些标识号在 MDK 里面是通过宏定义定义的:

本文标签:stm32中USART2是怎么传输数据的

产品列表
产品封装
友情链接