173 2438 5004
KEROS加密芯片——品牌直销 | 免费样品 | 技术支持
当前位置:网站首页 > 资讯中心 正文 资讯中心

在线对称加密_常见对称加密

keros@mark 2022-07-19 资讯中心

分享是一种快乐,在这里和大家一起学习在线对称加密_常见对称加密的知识,不要忘记关注本站哦。

www.keroschip.com

数据加密技术有哪些

加密技术通常分为两大类在线对称加密:“对称式”和“非对称式”。

对称式加密就是加密和解密使用同一个密钥在线对称加密,通常称之为“Session Key ”这种加密技术目前被广泛采用在线对称加密,如美国政府所采用在线对称加密的DES加密标准就是一种典型的“对称式”加密法在线对称加密,它的Session Key长度为56Bits。

非对称式加密就是加密和解密所使用的不是同一个密钥,通常有两个密钥,称为“公钥”和“私钥”,它们两个必需配对使用,否则不能打开加密文件。这里的“公钥”是指可以对外公布的,“私钥”则不能,只能由持有人一个人知道。它的优越性就在这里,因为对称式的加密方法如果是在网络上传输加密文件就很难把密钥告诉对方,不管用什么方法都有可能被别窃听到。而非对称式的加密方法有两个密钥,且其中的“公钥”是可以公开的,也就不怕别人知道,收件人解密时只要用自己的私钥即可以,这样就很好地避免了密钥的传输安全性问题。

一般的数据加密可以在通信的三个层次来实现:链路加密、节点加密和端到端加密。(3)

链路加密

对于在两个网络节点间的某一次通信链路,链路加密能为网上传输的数据提供安全证。对于链路加密(又称在线加密),所有消息在被传输之前进行加密,在每一个节点对接收到消息进行解密,然后先使用下一个链路的密钥对消息进行加密,再进行传输。在到达目的地之前,一条消息可能要经过许多通信链路的传输。

由于在每一个中间传输节点消息均被解密后重新进行加密,因此,包括路由信息在内的链路上的所有数据均以密文形式出现。这样,链路加密就掩盖了被传输消息的源点与终点。由于填充技术的使用以及填充字符在不需要传输数据的情况下就可以进行加密,这使得消息的频率和长度特性得以掩盖,从而可以防止对通信业务进行分析。

尽管链路加密在计算机网络环境中使用得相当普遍,但它并非没有问题。链路加密通常用在点对点的同步或异步线路上,它要求先对在链路两端的加密设备进行同步,然后使用一种链模式对链路上传输的数据进行加密。这就给网络的性能和可管理性带来了副作用。

在线路/信号经常不通的海外或卫星网络中,链路上的加密设备需要频繁地进行同步,带来的后果是数据丢失或重传。另一方面,即使仅一小部分数据需要进行加密,也会使得所有传输数据被加密。

在一个网络节点,链路加密仅在通信链路上提供安全性,消息以明文形式存在,因此所有节点在物理上必须是安全的,否则就会泄漏明文内容。然而保证每一个节点的安全性需要较高的费用,为每一个节点提供加密硬件设备和一个安全的物理环境所需要的费用由以下几部分组成:保护节点物理安全的雇员开销,为确保安全策略和程序的正确执行而进行审计时的费用,以及为防止安全性被破坏时带来损失而参加保险的费用。

在传统的加密算法中,用于解密消息的密钥与用于加密的密钥是相同的,该密钥必须被秘密保存,并按一定规则进行变化。这样,密钥分配在链路加密系统中就成了一个问题,因为每一个节点必须存储与其相连接的所有链路的加密密钥,这就需要对密钥进行物理传送或者建立专用网络设施。而网络节点地理分布的广阔性使得这一过程变得复杂,同时增加了密钥连续分配时的费用。

节点加密

尽管节点加密能给网络数据提供较高的安全性,但它在操作方式上与链路加密是类似的:两者均在通信链路上为传输的消息提供安全性;都在中间节点先对消息进行解密,然后进行加密。因为要对所有传输的数据进行加密,所以加密过程对用户是透明的。

然而,与链路加密不同,节点加密不允许消息在网络节点以明文形式存在,它先把收到的消息进行解密,然后采用另一个不同的密钥进行加密,这一过程是在节点上的一个安全模块中进行。

节点加密要求报头和路由信息以明文形式传输,以便中间节点能得到如何处理消息的信息。因此这种方法对于防止攻击者分析通信业务是脆弱的。

端到端加密

端到端加密允许数据在从源点到终点的传输过程中始终以密文形式存在。采用端到端加密,消息在被传输时到达终点之前不进行解密,因为消息在整个传输过程中均受到保护,所以即使有节点被损坏也不会使消息泄露。

端到端加密系统的价格便宜些,并且与链路加密和节点加密相比更可靠,更容易设计、实现和维护。端到端加密还避免了其它加密系统所固有的同步问题,因为每个报文包均是独立被加密的,所以一个报文包所发生的传输错误不会影响后续的报文包。此外,从用户对安全需求的直觉上讲,端到端加密更自然些。单个用户可能会选用这种加密方法,以便不影响网络上的其他用户,此方法只需要源和目的节点是保密的即可。

端到端加密系统通常不允许对消息的目的地址进行加密,这是因为每一个消息所经过的节点都要用此地址来确定如何传输消息。由于这种加密方法不能掩盖被传输消息的源点与终点,因此它对于防止攻击者分析通信业务是脆弱的。

对称加密和非对称加密的 优缺点

密码学中两种常见的密码算法为对称密码算法(单钥密码算法)和非对称密码算法(公钥密码算法)。

对称密码算法有时又叫传统密码算法,就是加密密钥能够从解密密钥中推算出来,反过来也成立。在大多数对称算法中,加密解密密钥是相同的。这些算法也叫秘密密钥算法或单密钥算法,它要求发送者和接收者在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都能对消息进行加密解密。只要通信需要保密,密钥就必须保密。对称算法的加密和解密表示为:

Ek(M)=C

Dk(C)=M

对称算法可分为两类。一次只对明文中的单个位(有时对字节)运算的算法称为序列算法或序列密码。另一类算法是对明文的一组位进行运算,这些位组称为分组,相应的算法称为分组算法或分组密码。现代计算机密码算法的典型分组长度为64位――这个长度大到足以防止分析破译,但又小到足以方便作用。

这种算法具有如下的特性:

Dk(Ek(M))=M

常用的采用对称密码术的加密方案有5个组成部分(如图所示)

l)明文:原始信息。

2)加密算法:以密钥为参数,对明文进行多种置换和转换的规则和步骤,变换结果为密文。

3)密钥:加密与解密算法的参数,直接影响对明文进行变换的结果。

4)密文:对明文进行变换的结果。

5)解密算法:加密算法的逆变换,以密文为输入、密钥为参数,变换结果为明文。

对称密码术的优点在于效率高(加/解密速度能达到数十兆/秒或更多),算法简单,系统开销小,适合加密大量数据。

尽管对称密码术有一些很好的特性,但它也存在着明显的缺陷,包括:

l)进行安全通信前需要以安全方式进行密钥交换。这一步骤,在某种情况下是可行的,但在某些情况下会非常困难,甚至无法实现。

2)规模复杂。举例来说,A与B两人之间的密钥必须不同于A和C两人之间的密钥,否则给B的消息的安全性就会受到威胁。在有1000个用户的团体中,A需要保持至少999个密钥(更确切的说是1000个,如果她需要留一个密钥给他自己加密数据)。对于该团体中的其它用户,此种倩况同样存在。这样,这个团体一共需要将近50万个不同的密钥!推而广之,n个用户的团体需要N2/2个不同的密钥。

通过应用基于对称密码的中心服务结构,上述问题有所缓解。在这个体系中,团体中的任何一个用户与中心服务器(通常称作密钥分配中心)共享一个密钥。因而,需要存储的密钥数量基本上和团体的人数差不多,而且中心服务器也可以为以前互相不认识的用户充当“介绍人”。但是,这个与安全密切相关的中心服务器必须随时都是在线的,因为只要服务器一掉线,用户间的通信将不可能进行。这就意味着中心服务器是整个通信成败的关键和受攻击的焦点,也意味着它还是一个庞大组织通信服务的“瓶颈”

非对称密钥算法是指一个加密算法的加密密钥和解密密钥是不一样的,或者说不能由其中一个密钥推导出另一个密钥。1、加解密时采用的密钥的差异:从上述对对称密钥算法和非对称密钥算法的描述中可看出,对称密钥加解密使用的同一个密钥,或者能从加密密钥很容易推出解密密钥;②对称密钥算法具有加密处理简单,加解密速度快,密钥较短,发展历史悠久等特点,非对称密钥算法具有加解密速度慢的特点,密钥尺寸大,发展历史较短等特点。

数据加密主要有哪些方式

主要有两种方式:“对称式”和“非对称式”。

对称式加密就是加密和解密使用同一个密钥,通常称之为“Session Key ”这种加密技术目前被广泛采用,如美国政府所采用的DES加密标准就是一种典型的“对称式”加密法,它的Session Key长度为56Bits。

非对称式加密就是加密和解密所使用的不是同一个密钥,通常有两个密钥,称为“公钥”和“私钥”,它们两个必需配对使用,否则不能打开加密文件。这里的“公钥”是指可以对外公布的,“私钥”则不能,只能由持有人一个人知道。它的优越性就在这里,因为对称式的加密方法如果是在网络上传输加密文件就很难把密钥告诉对方,不管用什么方法都有可能被别窃听到。而非对称式的加密方法有两个密钥,且其中的“公钥”是可以公开的,也就不怕别人知道,收件人解密时只要用自己的私钥即可以,这样就很好地避免了密钥的传输安全性问题。

一般的数据加密可以在通信的三个层次来实现:链路加密、节点加密和端到端加密。(3)

链路加密

对于在两个网络节点间的某一次通信链路,链路加密能为网上传输的数据提供安全证。对于链路加密(又称在线加密),所有消息在被传输之前进行加密,在每一个节点对接收到消息进行解密,然后先使用下一个链路的密钥对消息进行加密,再进行传输。在到达目的地之前,一条消息可能要经过许多通信链路的传输。

由于在每一个中间传输节点消息均被解密后重新进行加密,因此,包括路由信息在内的链路上的所有数据均以密文形式出现。这样,链路加密就掩盖了被传输消息的源点与终点。由于填充技术的使用以及填充字符在不需要传输数据的情况下就可以进行加密,这使得消息的频率和长度特性得以掩盖,从而可以防止对通信业务进行分析。

尽管链路加密在计算机网络环境中使用得相当普遍,但它并非没有问题。链路加密通常用在点对点的同步或异步线路上,它要求先对在链路两端的加密设备进行同步,然后使用一种链模式对链路上传输的数据进行加密。这就给网络的性能和可管理性带来了副作用。

在线路/信号经常不通的海外或卫星网络中,链路上的加密设备需要频繁地进行同步,带来的后果是数据丢失或重传。另一方面,即使仅一小部分数据需要进行加密,也会使得所有传输数据被加密。

在一个网络节点,链路加密仅在通信链路上提供安全性,消息以明文形式存在,因此所有节点在物理上必须是安全的,否则就会泄漏明文内容。然而保证每一个节点的安全性需要较高的费用,为每一个节点提供加密硬件设备和一个安全的物理环境所需要的费用由以下几部分组成:保护节点物理安全的雇员开销,为确保安全策略和程序的正确执行而进行审计时的费用,以及为防止安全性被破坏时带来损失而参加保险的费用。

在传统的加密算法中,用于解密消息的密钥与用于加密的密钥是相同的,该密钥必须被秘密保存,并按一定规则进行变化。这样,密钥分配在链路加密系统中就成了一个问题,因为每一个节点必须存储与其相连接的所有链路的加密密钥,这就需要对密钥进行物理传送或者建立专用网络设施。而网络节点地理分布的广阔性使得这一过程变得复杂,同时增加了密钥连续分配时的费用。

节点加密

尽管节点加密能给网络数据提供较高的安全性,但它在操作方式上与链路加密是类似的:两者均在通信链路上为传输的消息提供安全性;都在中间节点先对消息进行解密,然后进行加密。因为要对所有传输的数据进行加密,所以加密过程对用户是透明的。

然而,与链路加密不同,节点加密不允许消息在网络节点以明文形式存在,它先把收到的消息进行解密,然后采用另一个不同的密钥进行加密,这一过程是在节点上的一个安全模块中进行。

节点加密要求报头和路由信息以明文形式传输,以便中间节点能得到如何处理消息的信息。因此这种方法对于防止攻击者分析通信业务是脆弱的。

端到端加密

端到端加密允许数据在从源点到终点的传输过程中始终以密文形式存在。采用端到端加密,消息在被传输时到达终点之前不进行解密,因为消息在整个传输过程中均受到保护,所以即使有节点被损坏也不会使消息泄露。

端到端加密系统的价格便宜些,并且与链路加密和节点加密相比更可靠,更容易设计、实现和维护。端到端加密还避免了其它加密系统所固有的同步问题,因为每个报文包均是独立被加密的,所以一个报文包所发生的传输错误不会影响后续的报文包。此外,从用户对安全需求的直觉上讲,端到端加密更自然些。单个用户可能会选用这种加密方法,以便不影响网络上的其他用户,此方法只需要源和目的节点是保密的即可。

端到端加密系统通常不允许对消息的目的地址进行加密,这是因为每一个消息所经过的节点都要用此地址来确定如何传输消息。由于这种加密方法不能掩盖被传输消息的源点与终点,因此它对于防止攻击者分析通信业务是脆弱的。

视频可以怎么加密。

视频可以加密在线对称加密的方法有:

1、首先打开金钻视频加源密专家。

2、点击【新建】在线对称加密,点击【加密百视度频】后面的按钮。

3、在弹出的页面选择要加知密的视道频。

4、随后在出现的页面中选择加密视频的输出路径

5、最后在加密密码一栏输入密码,点击右侧加密即可。

扩展资料:

加密方式的种类:

1、MD5

一种被广泛使用的密码散列函数,可以产生出一个128位(16字节)的散列值(hashvalue),用于确保信息传输完整一致。MD5由美国密码学家罗纳德·李维斯特(RonaldLinnRivest)设计,于1992年公开,用以取代MD4算法。这套算法的程序在RFC1321标准中被加以规范。

2、对称加密

对称加密采用单钥密码系统的加密方法,同一个密钥可以同时用作信息的加密和解密,这种加密方法称为对称加密,也称为单密钥加密。

3、非对称加密

与对称加密算法不同,非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥(privatekey)。公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密。

产品的开发快则一个月,慢则一年,那么如何杜绝市面上各种山寨也成为了我们必须要关注的问题,加密芯片可以做到这点,在保障开发者权益的同时也保护了消费者权益,KEROS加密芯片作为该领域的领头者,一直在尽力贡献一份力。特点如下:接口:标准I2C协议接口;算法: 标准AES256 / KAS算法;特殊接口:Random Stream Cipher for Interface;工作温度:工业级 -40℃ ~+85℃;频率:400Khz;存储:2K字节EEPROM(可选);电压:1.8V~3.6V;封装:SOT23-6,SOP8,TDFN-6。在线对称加密_常见对称加密的介绍就聊到这里吧,感谢你花时间阅读本站内容,谢谢。

本文标签:在线对称加密

产品列表
产品封装
友情链接