173 2438 5004
KEROS加密芯片——品牌直销 | 免费样品 | 技术支持
当前位置:网站首页 > 资讯中心 正文 资讯中心

几种常见加密算法解析及使用

keros@mark 2022-10-19 资讯中心

本篇文章给大家谈谈几种常见加密算法解析及使用以及对应的知识点,希望对各位有所帮助。

本文目录一览

常见密码技术简介

##

密码技术在网络传输安全上的应用

随着互联网电子商务和网络支付的飞速发展,互联网安全已经是当前最重要的因素之一。作为一名合格的软件开发工程师,有必要了解整个互联网是如何来保证数据的安全传输的,本篇文章对网络传输安全体系以及涉及到的算法知识做了一个简要的介绍,希望大家能够有一个初步的了解。

###密码技术定义

简单的理解,密码技术就是编制密码和破译密码的一门技术,也即是我们常说的加密和解密。常见的结构如图:

其中涉及到的专业术语:

1.秘钥:分为加密秘钥和解密秘钥,两者相同的加密算法称为对称加密,不同的称为非对称加密;

2.明文:未加密过的原文信息,不可以被泄露;

3.密文:经过加密处理后的信息,无法从中获取有效的明文信息;

4.加密:明文转成密文的过程,密文的长度根据不同的加密算法也会有不同的增量;

5.解密:密文转成明文的过程;

6.加密/解密算法:密码系统使用的加密方法和解密方法;

7.攻击:通过截获数据流、钓鱼、木马、穷举等方式最终获取秘钥和明文的手段。

###密码技术和我们的工作生活息息相关

在我们的日常生活和工作中,密码技术的应用随处可见,尤其是在互联网系统上。下面列举几张比较有代表性的图片,所涉及到的知识点后面都会一一讲解到。

1.12306旧版网站每次访问时,浏览器一般会提示一个警告,是什么原因导致的? 这样有什么风险呢?

2.360浏览器浏览HTTPS网站时,点开地址栏的小锁图标会显示加密的详细信息,比如百度的话会显示```aes_128_GCM、ECDHE_RSA```,这些是什么意思?

3.在Mac系统的钥匙串里有很多的系统根证书,展开后有非常多的信息,这些是做什么用的?

4.去银行开通网上支付都会附赠一个U盾,那U盾有什么用呢?

##如何确保网络数据的传输安全

接下来我们从实际场景出发,以最常见的客户端Client和服务端Server传输文件为例来一步步了解整个安全体系。

####1. 保密性

首先客户端要把文件送到服务端,不能以明文形式发送,否则被黑客截获了数据流很容易就获取到了整个文件。也就是文件必须要确保保密性,这就需要用到对称加密算法。 

** 对称加密: **加密和解密所使用的秘钥相同称为对称加密。其特点是速度快、效率高,适用于对较大量的数据进行加密。常见的对称加密算法有DES、3DES、aes、TDEA、RC5等,让我们了解下最常见的3DES和aes算法:

** DES(Data Encryption Standard): **1972年由美国IBM研制,数学原理是将明文以8字节分组(不足8位可以有不同模式的填充补位),通过数学置换和逆置换得到加密结果,密文和明文长度基本相同。秘钥长度为8个字节,后有了更安全的一个变形,使用3条秘钥进行三次加密,也就是3DES加密。

**3DES:**可以理解为对明文进行了三次DES加密,增强了安全程度。

** aes(Advanced Encryption Standard): **2001年由美国发布,2002年成为有效标准,2006年成为最流行的对称加密算法之一。由于安全程度更高,正在逐步替代3DES算法。其明文分组长度为16字节,秘钥长度可以为16、24、32(128、192、256位)字节,根据秘钥长度,算法被称为aes-128、aes-192和aes-256。

对称加密算法的入参基本类似,都是明文、秘钥和模式三个参数。可以通过网站进行模拟测试:[]()。其中的模式我们主要了解下ECB和CBC两种简单模式,其它有兴趣可自行查阅。

** ECB模式(Electronic Codebook Book): **这种模式是将明文分成若干小段,然后对每一段进行单独的加密,每一段之间不受影响,可以单独的对某几段密文进行解密。

** CBC模式(Cipher Block Chaining): **这种模式是将明文分成若干小段,然后每一段都会和初始向量(上图的iv偏移量)或者上一段的密文进行异或运算后再进行加密,不可以单独解密某一断密文。

 ** 填充补位: **常用为PKCS5Padding,规则为缺几位就在后面补几位的所缺位数。,比如明文数据为```/x01/x01/x01/x01/x01/x01```6个字节,缺2位补```/x02```,补完位```/x01/x01/x01/x01/x01/x01/x02/x02```。解密后也会按照这个规则进行逆处理。需要注意的是:明文为8位时也需要在后面补充8个```/x08```。

####2. 真实性

客户端有了对称秘钥,就需要考虑如何将秘钥送到服务端,问题跟上面一样:不能以明文形式直接传输,否则还是会被黑客截获到。这里就需要用到非对称加密算法。

** 非对称加密: **加密和解密秘钥不同,分别称为公开秘钥(publicKey)和私有秘钥(privateKey)。两者成对出现,公钥加密只能用私钥解密,而私钥加密也只能用公钥加密。两者不同的是:公钥是公开的,可以随意提供给任何人,而私钥必须保密。特点是保密性好,但是加密速度慢。常见的非对称加密算法有RSA、ECC等;我们了解下常见的RSA算法:

** RSA(Ron Rivest、Adi Shamir、Leonard Adleman): **1977年由麻省理工学院三人提出,RSA就是他们三个人的姓氏开头字母拼在一起组成的。数学原理是基于大数分解。类似于```100=20x5```,如果只知道100的话,需要多次计算才可以试出20和5两个因子。如果100改为极大的一个数,就非常难去试出真正的结果了。下面是随机生成的一对公私钥:

这是使用公钥加密后结果:

RSA的这种特性就可以保证私钥持有者的真实性,客户端使用公钥加密文件后,黑客就算截获到数据因为没有私钥也是无法解密的。

** Tips: **

+** 不使用对称加密,直接用RSA公私钥进行加密和解密可以吗? **

答案:不可以,第一是因为RSA加密速度比对称加密要慢几十倍甚至几百倍以上,第二是因为RSA加密后的数据量会变大很多。

+** 由服务端生成对称秘钥,然后用私钥加密,客户端用公钥解密这样来保证对称秘钥安全可行吗? **

答案:不可行,因为公钥是公开的,任何一个人都可以拿到公钥解密获取对称秘钥。

####3. 完整性

当客户端向服务端发送对称秘钥加密后的文件时,如果被黑客截获,虽然无法解密得到对称秘钥。但是黑客可以用服务端公钥加密一个假的对称秘钥,并用假的对称秘钥加密一份假文件发给服务端,这样服务端会仍然认为是真的客户端发送来的,而并不知道阅读的文件都已经是掉包的了。

这个问题就需要用到散列算法,也可以译为Hash。常见的比如MD4、MD5、SHA-1、SHA-2等。

** 散列算法(哈希算法): **简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。而且该过程是不可逆的,无法通过摘要获得原文。

** SHA-1(Secure Hash Algorithm 1): **由美国提出,可以生成一个20字节长度的消息摘要。05年被发现了针对SHA-1的有效攻击方法,已经不再安全。2010年以后建议使用SHA-2和SHA-3替代SHA-1。

** SHA-2(Secure Hash Algorithm 2): **其下又分为六个不同算法标准:SHA-224、SHA-256、SHA-384、SHA-512、SHA-512/224、SHA512/256。其后面数字为摘要结果的长度,越长的话碰撞几率越小。SHA-224的使用如下图:

客户端通过上面的散列算法可以获取文件的摘要消息,然后用客户端私钥加密后连同加密的文件发给服务端。黑客截获到数据后,他没有服务端私钥无法获取到对称秘钥,也没有客户端私钥无法伪造摘要消息。如果再像上面一样去掉包文件,服务端收到解密得到摘要消息一对比就可以知道文件已经被掉包篡改过了。

这种用私钥对摘要消息进行加密的过程称之为数字签名,它就解决了文件是否被篡改问题,也同时可以确定发送者身份。通常这么定义:

** 加密: **用公钥加密数据时称为加密。

** 签名: **用私钥加密数据时称为签名。

####4. 信任性

我们通过对称加密算法加密文件,通过非对称加密传输对称秘钥,再通过散列算法保证文件没被篡改过和发送者身份。这样就安全了吗?

答案是否定的,因为公钥是要通过网络送到对方的。在这期间如果出现问题会导致客户端收到的公钥并不一定是服务端的真实公钥。常见的** 中间人攻击 **就是例子:

** 中间人攻击MITM(Man-in-the-MiddleAttack): **攻击者伪装成代理服务器,在服务端发送公钥证书时,篡改成攻击者的。然后收到客户端数据后使用攻击者私钥解密,再篡改后使用攻击者私钥签名并且将攻击者的公钥证书发送给服务器。这样攻击者就可以同时欺骗双方获取到明文。

这个风险就需要通过CA机构对公钥证书进行数字签名绑定公钥和公钥所属人,也就是PKI体系。

** PKI(Privilege Management Infrastructure): **支持公钥管理并能支持认证、加密、完整性和可追究性的基础设施。可以说整个互联网数据传输都是通过PKI体系进行安全保证的。

** CA(Certificate Authority): **CA机构就是负责颁发证书的,是一个比较公认的权威的证书发布机构。CA有一个管理标准:WebTrust。只有通过WebTrust国际安全审计认证,根证书才能预装到主流的浏览器而成为一个全球可信的认证机构。比如美国的GlobalSign、VeriSign、DigiCert,加拿大的Entrust。我国的CA金融方面由中国人民银行管理CFCA,非金融CA方面最初由中国电信负责建设。

CA证书申请流程:公司提交相应材料后,CA机构会提供给公司一张证书和其私钥。会把Issuer,Public key,Subject,Valid from,Valid to等信息以明文的形式写到证书里面,然后用一个指纹算法计算出这些数字证书内容的一个指纹,并把指纹和指纹算法用自己的私钥进行加密。由于浏览器基本都内置了CA机构的根证书,所以可以正确的验证公司证书指纹(验签),就不会有安全警告了。

但是:所有的公司其实都可以发布证书,甚至我们个人都可以随意的去发布证书。但是由于浏览器没有内置我们的根证书,当客户端浏览器收到我们个人发布的证书后,找不到根证书进行验签,浏览器就会直接警告提示,这就是之前12306打开会有警告的原因。这种个人发布的证书,其实可以通过系统设置为受信任的证书去消除这个警告。但是由于这种证书机构的权威性和安全性难以信任,大家最好不要这么做。

我们看一下百度HTTPS的证书信息:

其中比较重要的信息:

签发机构:GlobalSign Root CA;

有效日期:2018-04-03到2019-05-26之间可用;

公钥信息:RSA加密,2048位;

数字签名:带 RSA 加密的 SHA-256 ( 1.2.840.113549.1.1.11 )

绑定域名:再进行HTTPS验证时,如果当前域名和证书绑定域名不一致,也会出现警告;

URI:在线管理地址。如果当前私钥出现了风险,CA机构可以在线吊销该证书。

####5. 不可抵赖性

看起来整个过程都很安全了,但是仍存在一种风险:服务端签名后拒不承认,归咎于故障不履行合同怎么办。

解决方法是采用数字时间戳服务:DTS。

** DTS(digital time-stamp): **作用就是对于成功的电子商务应用,要求参与交易各方不能否认其行为。一般来说,数字时间戳产生的过程为:用户首先将需要加时间戳的文件用Hash算法运算形成摘要,然后将该摘要发送到DTS。DTS在加入了收到文件摘要的日期和事件信息后再对该文件进行数字签名,然后送达用户。

####6. 再次认证

我们有了数字证书保证了身份的真实性,又有了DTS提供的不可抵赖性。但是还是不能百分百确定使用私钥的就是合法持有者。有可能出现被别人盗用私钥进行交易的风险。

解决这个就需要用到强口令、认证令牌OTP、智能卡、U盾或生物特征等技术对使用私钥的当前用户进行认证,已确定其合法性。我们简单了解下很常见的U盾。

** USB Key(U盾): **刚出现时外形比较像U盘,安全性能像一面盾牌,取名U盾。其内部有一个只可写不可读的区域存储着用户的私钥(也有公钥证书),银行同样也拥有一份。当进行交易时,所有涉及到私钥的运算都在U盾内部进行,私钥不会泄露。当交易确认时,交易的详细数据会显示到U盾屏幕上,确认无误后通过物理按键确认就可以成功交易了。就算出现问题黑客也是无法控制U盾的物理按键的,用户可以及时取消避免损失。有的U盾里面还有多份证书,来支持国密算法。

** 国密算法: **国家密码局针对各种算法制定了一些列国产密码算法。具体包括:SM1对称加密算法、SM2公钥算法、SM3摘要算法、SM4对称加密算法、ZUC祖冲之算法等。这样可以对国产固件安全和数据安全进行进一步的安全控制。

## HTTPS分析

有了上面的知识,我们可以尝试去分析下HTTPS的整个过程,用Wireshark截取一次HTTPS报文:

Client Hello: 客户端发送Hello到服务端443端口,里面包含了随机数、客户端支持的加密算法、客户端的TLS版本号等;

Server Hello: 服务端回应Hello到客户端,里面包含了服务端选择的加密套件、随机数等;

Certificate: 服务端向客户端发送证书

服务端计算对称秘钥:通过ECDH算法得到对称秘钥

客户端计算对称秘钥:通过ECDH算法得到对称秘钥

开始用对称秘钥进行加密传输数据

其中我们又遇到了新的算法:DH算法

** DH(Diffie-Hellman): **1976年由Whitefield与Martin Hellman提出的一个奇妙的秘钥交换协议。这个机制的巧妙在于可以通过安全的方式使双方获得一个相同的秘钥。数学原理是基于原根的性质,如图:

*** DH算法的用处不是为了加密或解密消息,而是用于通信双方安全的交换一个相同的秘钥。 ***

** ECDH: **基于ECC(椭圆曲线密码体制)的DH秘钥交换算法,数学原理是基于椭圆曲线上的离散对数问题。

** ECDHE: **字面少了一个E,E代表了临时。在握手流程中,作为服务器端,ECDH使用证书公钥代替Pb,使用自身私钥代替Xb。这个算法时服务器不发送server key exchange报文,因为发送certificate报文时,证书本身就包含了Pb信息。

##总结

| 算法名称  | 特点 | 用处 | 常用算法名 |

| --- | :--- | :---: | ---: |

| 对称加密  | 速度快,效率高| 用于直接加密文件 | 3DES、aes、RC4 |

| 非对称加密  | 速度相对慢,但是确保安全 | 构建CA体系 | RSA、ECC |

| 散列算法 | 算出的摘要长度固定,不可逆 | 防止文件篡改 | SHA-1、SHA-2 |

| DH算法 | 安全的推导出对称秘钥 | 交换对称秘钥 | ECDH |

----

常见的加密算法、原理、优缺点、用途

在安全领域,利用密钥加密算法来对通信的过程进行加密是一种常见的安全手段。利用该手段能够保障数据安全通信的三个目标:

而常见的密钥加密算法类型大体可以分为三类:对称加密、非对称加密、单向加密。下面我们来了解下相关的算法原理及其常见的算法。

在加密传输中最初是采用对称密钥方式,也就是加密和解密都用相同的密钥。

1.对称加密算法采用单密钥加密,在通信过程中,数据发送方将原始数据分割成固定大小的块,经过密钥和加密算法逐个加密后,发送给接收方

2.接收方收到加密后的报文后,结合解密算法使用相同密钥解密组合后得出原始数据。

图示:

非对称加密算法采用公钥和私钥两种不同的密码来进行加解密。公钥和私钥是成对存在,公钥是从私钥中提取产生公开给所有人的,如果使用公钥对数据进行加密,那么只有对应的私钥(不能公开)才能解密,反之亦然。N 个用户通信,需要2N个密钥。

非对称密钥加密适合对密钥或身份信息等敏感信息加密,从而在安全性上满足用户的需求。

1.甲使用乙的公钥并结合相应的非对称算法将明文加密后发送给乙,并将密文发送给乙。

2.乙收到密文后,结合自己的私钥和非对称算法解密得到明文,得到最初的明文。

图示:

单向加密算法只能用于对数据的加密,无法被解密,其特点为定长输出、雪崩效应(少量消息位的变化会引起信息摘要的许多位变化)。

单向加密算法常用于提取数据指纹,验证数据的完整性、数字摘要、数字签名等等。

1.发送者将明文通过单向加密算法加密生成定长的密文串,然后传递给接收方。

2.接收方将用于比对验证的明文使用相同的单向加密算法进行加密,得出加密后的密文串。

3.将之与发送者发送过来的密文串进行对比,若发送前和发送后的密文串相一致,则说明传输过程中数据没有损坏;若不一致,说明传输过程中数据丢失了。

图示:

MD5、sha1、sha224等等

密钥交换IKE(Internet Key Exchange)通常是指双方通过交换密钥来实现数据加密和解密

常见的密钥交换方式有下面两种:

将公钥加密后通过网络传输到对方进行解密,这种方式缺点在于具有很大的可能性被拦截破解,因此不常用

DH算法是一种密钥交换算法,其既不用于加密,也不产生数字签名。

DH算法通过双方共有的参数、私有参数和算法信息来进行加密,然后双方将计算后的结果进行交换,交换完成后再和属于自己私有的参数进行特殊算法,经过双方计算后的结果是相同的,此结果即为密钥。

如:

安全性

在整个过程中,第三方人员只能获取p、g两个值,AB双方交换的是计算后的结果,因此这种方式是很安全的。

答案:使用公钥证书

公钥基础设施是一个包括硬件、软件、人员、策略和规程的集合

用于实现基于公钥密码机制的密钥和证书的生成、管理、存储、分发和撤销的功能

签证机构CA、注册机构RA、证书吊销列表CRL和证书存取库CB。

公钥证书是以数字签名的方式声明,它将公钥的值绑定到持有对应私钥的个人、设备或服务身份。公钥证书的生成遵循X.509协议的规定,其内容包括:证书名称、证书版本、序列号、算法标识、颁发者、有效期、有效起始日期、有效终止日期、公钥 、证书签名等等的内容。

1.客户A准备好要传送的数字信息(明文)。(准备明文)

2.客户A对数字信息进行哈希(hash)运算,得到一个信息摘要。(准备摘要)

3.客户A用CA的私钥(SK)对信息摘要进行加密得到客户A的数字签名,并将其附在数字信息上。(用私钥对数字信息进行数字签名)

4.客户A随机产生一个加密密钥(DES密钥),并用此密钥对要发送的信息进行加密,形成密文。 (生成密文)

5.客户A用双方共有的公钥(PK)对刚才随机产生的加密密钥进行加密,将加密后的DES密钥连同密文一起传送给乙。(非对称加密,用公钥对DES密钥进行加密)

6.银行B收到客户A传送过来的密文和加过密的DES密钥,先用自己的私钥(SK)对加密的DES密钥进行解密,得到DES密钥。(用私钥对DES密钥解密)

7.银行B然后用DES密钥对收到的密文进行解密,得到明文的数字信息,然后将DES密钥抛弃(即DES密钥作废)。(解密文)

8.银行B用双方共有的公钥(PK)对客户A的数字签名进行解密,得到信息摘要。银行B用相同的hash算法对收到的明文再进行一次hash运算,得到一个新的信息摘要。(用公钥解密数字签名)

9.银行B将收到的信息摘要和新产生的信息摘要进行比较,如果一致,说明收到的信息没有被修改过。(对比信息摘要和信息)

答案是没法保证CA的公钥没有被篡改。通常操作系统和浏览器会预制一些CA证书在本地。所以发送方应该去那些通过认证的CA处申请数字证书。这样是有保障的。

但是如果系统中被插入了恶意的CA证书,依然可以通过假冒的数字证书发送假冒的发送方公钥来验证假冒的正文信息。所以安全的前提是系统中不能被人插入非法的CA证书。

END

几种常见加密算法解析及使用

几种对称性加密算法:aes,DES,3DES

DES是一种分组数据加密技术(先将数据分成固定长度的小数据块,之后进行加密),速度较快,适用于大量数据加密,而3DES是一种基于DES的加密算法,使用3个不同密匙对同一个分组数据块进行3次加密,如此以使得密文强度更高。

相较于DES和3DES算法而言,aes算法有着更高的速度和资源使用效率,安全级别也较之更高了,被称为下一代加密标准。

几种非对称性加密算法:RSA,DSA,ECC

RSA和DSA的安全性及其它各方面性能都差不多,而ECC较之则有着很多的性能优越,包括处理速度,带宽要求,存储空间等等。

几种线性散列算法(签名算法):MD5,SHA1,HMAC

这几种算法只生成一串不可逆的密文,经常用其效验数据传输过程中是否经过修改,因为相同的生成算法对于同一明文只会生成唯一的密文,若相同算法生成的密文不同,则证明传输数据进行过了修改。通常在数据传说过程前,使用MD5和SHA1算法均需要发送和接收数据双方在数据传送之前就知道密匙生成算法,而HMAC与之不同的是需要生成一个密匙,发送方用此密匙对数据进行摘要处理(生成密文),接收方再利用此密匙对接收到的数据进行摘要处理,再判断生成的密文是否相同。

对于各种加密算法的选用:

由于对称加密算法的密钥管理是一个复杂的过程,密钥的管理直接决定着他的安全性,因此当数据量很小时,我们可以考虑采用非对称加密算法。

在实际的操作过程中,我们通常采用的方式是:采用非对称加密算法管理对称算法的密钥,然后用对称加密算法加密数据,这样我们就集成了两类加密算法的优点,既实现了加密速度快的优点,又实现了安全方便管理密钥的优点。

如果在选定了加密算法后,那采用多少位的密钥呢?一般来说,密钥越长,运行的速度就越慢,应该根据的我们实际需要的安全级别来选择,一般来说,RSA建议采用1024位的数字,ECC建议采用160位,aes采用128为即可。

快速了解常用的对称加密算法,再也不用担心面试官的刨根问底

加密算法通常被分为两种: 对称加密 和 非对称加密 。其中,对称加密算法在加密和解密时使用的密钥相同;非对称加密算法在加密和解密时使用的密钥不同,分为公钥和私钥。此外,还有一类叫做 消息摘要算法 ,是对数据进行摘要并且不可逆的算法。

这次我们了解一下对称加密算法。

对称加密算法在加密和解密时使用的密钥相同,或是使用两个可以简单地相互推算的密钥。在大多数的对称加密算法中,加密和解密的密钥是相同的。

它要求双方在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都可以对他们发送的信息进行解密,这也是对称加密算法的主要缺点之一。

常见的对称加密算法有:DES算法、3DES算法、aes算法。

DES算法(Data Encryption Standard)是一种常见的分组加密算法。

分组加密算法是将明文分成固定长度的组,每一组都采用同一密钥和算法进行加密,输出也是固定长度的密文。

由IBM公司在1972年研制,1976年被美国联邦政府的国家标准局确定为联邦资料处理标准(FIPS),随后在国际上广泛流传开来。

在DES算法中,密钥固定长度为64位。明文按64位进行分组,分组后的明文组和密钥按位置换或交换的方法形成密文组,然后再把密文组拼装成密文。

密钥的每个第八位设置为奇偶校验位,也就是第8、16、24、32、40、48、56、64位,所以密钥的实际参与加密的长度为56位。

我们用Java写个例子:

运行结果如下:

DES现在已经不是一种安全的加密方法,主要因为它使用的密钥过短,很容易被暴力破解。

3DES算法(Triple Data Encryption Algorithm)是DES算法的升级版本,相当于是对明文进行了三次DES加密。

由于计算机运算能力的增强,DES算法由于密钥长度过低容易被暴力破解;3DES算法提供了一种相对简单的方法,即通过增加DES的密钥长度来避免类似的攻击,而不是设计一种全新的块密码算法。

在DES算法中,密钥固定长度为192位。在加密和解密时,密钥会被分为3个64位的密钥。

加密过程如下:

解密过程如下:

我们用Java写个例子:

运行结果如下:

虽然3DES算法在安全性上有所提升,但是因为使用了3次DES算法,加密和解密速度比较慢。

aes(Advanced Encryption Standard,高级加密标准)主要是为了取代DES加密算法的,虽然出现了3DES的加密方法,但由于它的加密时间是DES算法的3倍多,密钥位数还是不能满足对安全性的要求。

1997年1月2号,美国国家标准与技术研究院(NIST)宣布希望征集高级加密标准,用以取代DES。全世界很多密码工作者都提交了自己设计的算法。经过甄选流程,高级加密标准由美国国家标准与技术研究院于2001年11月26日发布于FIPS PUB 197,并在2002年5月26日成为有效的标准。

该算法为比利时密码学家Joan Daemen和Vincent Rijmen所设计,结合两位作者的名字,以 Rijndael 为名投稿高级加密标准的甄选流程。

aes算法的密钥长度是固定,密钥的长度可以使用128位、192位或256位。

aes算法也是一种分组加密算法,其分组长度只能是128位。分组后的明文组和密钥使用几种不同的方法来执行排列和置换运算形成密文组,然后再把密文组拼装成密文。

我们用Java写个例子:

运行结果如下:

aes算法是目前应用最广泛的对称加密算法。

对称加密算法在加密和解密时使用的密钥相同,常见的对称加密算法有:DES算法、3DES算法、aes算法。

由于安全性低、加密解密效率低,DES算法和3DES算法是不推荐使用的,aes算法是目前应用最广泛的对称加密算法。

常见加密算法原理及概念

在安全领域,利用密钥加密算法来对通信的过程进行加密是一种常见的安全手段。利用该手段能够保障数据安全通信的三个目标:

而常见的密钥加密算法类型大体可以分为三类:对称加密、非对称加密、单向加密。下面我们来了解下相关的算法原理及其常见的算法。

对称加密算法采用单密钥加密,在通信过程中,数据发送方将原始数据分割成固定大小的块,经过密钥和加密算法逐个加密后,发送给接收方;接收方收到加密后的报文后,结合密钥和解密算法解密组合后得出原始数据。由于加解密算法是公开的,因此在这过程中,密钥的安全传递就成为了至关重要的事了。而密钥通常来说是通过双方协商,以物理的方式传递给对方,或者利用第三方平台传递给对方,一旦这过程出现了密钥泄露,不怀好意的人就能结合相应的算法拦截解密出其加密传输的内容。

对称加密算法拥有着算法公开、计算量小、加密速度和效率高得特定,但是也有着密钥单一、密钥管理困难等缺点。

常见的对称加密算法有:

DES:分组式加密算法,以64位为分组对数据加密,加解密使用同一个算法。

3DES:三重数据加密算法,对每个数据块应用三次DES加密算法。

aes:高级加密标准算法,是美国联邦政府采用的一种区块加密标准,用于替代原先的DES,目前已被广泛应用。

Blowfish:Blowfish算法是一个64位分组及可变密钥长度的对称密钥分组密码算法,可用来加密64比特长度的字符串。

非对称加密算法采用公钥和私钥两种不同的密码来进行加解密。公钥和私钥是成对存在,公钥是从私钥中提取产生公开给所有人的,如果使用公钥对数据进行加密,那么只有对应的私钥才能解密,反之亦然。

下图为简单非对称加密算法的常见流程:

发送方Bob从接收方Alice获取其对应的公钥,并结合相应的非对称算法将明文加密后发送给Alice;Alice接收到加密的密文后,结合自己的私钥和非对称算法解密得到明文。这种简单的非对称加密算法的应用其安全性比对称加密算法来说要高,但是其不足之处在于无法确认公钥的来源合法性以及数据的完整性。

非对称加密算法具有安全性高、算法强度负复杂的优点,其缺点为加解密耗时长、速度慢,只适合对少量数据进行加密,其常见算法包括:

RSA :RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但那时想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥,可用于加密,也能用于签名。

DSA :数字签名算法,仅能用于签名,不能用于加解密。

DSS :数字签名标准,技能用于签名,也可以用于加解密。

ELGamal :利用离散对数的原理对数据进行加解密或数据签名,其速度是最慢的。

单向加密算法常用于提取数据指纹,验证数据的完整性。发送者将明文通过单向加密算法加密生成定长的密文串,然后传递给接收方。接收方在收到加密的报文后进行解密,将解密获取到的明文使用相同的单向加密算法进行加密,得出加密后的密文串。随后将之与发送者发送过来的密文串进行对比,若发送前和发送后的密文串相一致,则说明传输过程中数据没有损坏;若不一致,说明传输过程中数据丢失了。单向加密算法只能用于对数据的加密,无法被解密,其特点为定长输出、雪崩效应。常见的算法包括:MD5、sha1、sha224等等,其常见用途包括:数字摘要、数字签名等等。

密钥交换IKE(Internet Key Exchange)通常是指双方通过交换密钥来实现数据加密和解密,常见的密钥交换方式有下面两种:

1、公钥加密,将公钥加密后通过网络传输到对方进行解密,这种方式缺点在于具有很大的可能性被拦截破解,因此不常用;

2、Diffie-Hellman,DH算法是一种密钥交换算法,其既不用于加密,也不产生数字签名。DH算法的巧妙在于需要安全通信的双方可以用这个方法确定对称密钥。然后可以用这个密钥进行加密和解密。但是注意,这个密钥交换协议/算法只能用于密钥的交换,而不能进行消息的加密和解密。双方确定要用的密钥后,要使用其他对称密钥操作加密算法实际加密和解密消息。DH算法通过双方共有的参数、私有参数和算法信息来进行加密,然后双方将计算后的结果进行交换,交换完成后再和属于自己私有的参数进行特殊算法,经过双方计算后的结果是相同的,此结果即为密钥。

如:

在整个过程中,第三方人员只能获取p、g两个值,AB双方交换的是计算后的结果,因此这种方式是很安全的。

公钥基础设施是一个包括硬件、软件、人员、策略和规程的集合,用于实现基于公钥密码机制的密钥和证书的生成、管理、存储、分发和撤销的功能,其组成包括:签证机构CA、注册机构RA、证书吊销列表CRL和证书存取库CB。

PKI采用证书管理公钥,通过第三方可信任CA中心,把用户的公钥和其他用户信息组生成证书,用于验证用户的身份。

公钥证书是以数字签名的方式声明,它将公钥的值绑定到持有对应私钥的个人、设备或服务身份。公钥证书的生成遵循X.509协议的规定,其内容包括:证书名称、证书版本、序列号、算法标识、颁发者、有效期、有效起始日期、有效终止日期、公钥 、证书签名等等的内容。

CA证书认证的流程如下图,Bob为了向Alice证明自己是Bob和某个公钥是自己的,她便向一个Bob和Alice都信任的CA机构申请证书,Bob先自己生成了一对密钥对(私钥和公钥),把自己的私钥保存在自己电脑上,然后把公钥给CA申请证书,CA接受申请于是给Bob颁发了一个数字证书,证书中包含了Bob的那个公钥以及其它身份信息,当然,CA会计算这些信息的消息摘要并用自己的私钥加密消息摘要(数字签名)一并附在Bob的证书上,以此来证明这个证书就是CA自己颁发的。Alice得到Bob的证书后用CA的证书(自签署的)中的公钥来解密消息摘要,随后将摘要和Bob的公钥发送到CA服务器上进行核对。CA在接收到Alice的核对请求后,会根据Alice提供的信息核对Bob的证书是否合法,如果确认合法则回复Alice证书合法。Alice收到CA的确认回复后,再去使用从证书中获取的Bob的公钥加密邮件然后发送给Bob,Bob接收后再以自己的私钥进行解密。

智能化时代的到来涉及了各种核心算法,保护算法就能保障开发者权益,杜绝市面上各种山寨品,加密芯片恰好能起到很好的保护作用,如何选择加密芯片呢?KEROS加密芯片专注于加密领域十余年,行业首选。
1.安全性:采用国际通用aes256算法加密并同时通过KAS传送,除基本认证之外,利用2K安全EEPROM,用户可以自己管理密钥和数据,实现双重保护。
2.唯一性:以定制的方式为每一位用户单独定制“专属型号CID”,多用户之间算法不兼容,并且采用固化的方法直接将算法固化到晶圆上而无需烧入。
3.序列号:每颗芯片制造生产时具有5字节全球唯一SN序列号,每颗芯片SN都不会重复。
4.防抄特性:每颗芯片都有自己独特的密钥系统,破解单颗芯片只对这颗芯片对应的产品有效,对整个同类型的产品是无效的,依旧无法通过验证。而且KEROS采用ASIC方法设计,芯片内为纯逻辑电路,封装内有40多层逻辑电路整合了10万多个逻辑门,爆力刨片破解难度可想而知。
5.安全存储:用户可以将保密数据加密之后安全的存放到EEPROM中。几种常见加密算法解析及使用的介绍就聊到这里吧,感谢你花时间阅读本站内容。

本文标签:几种常见加密算法解析及使用

产品列表
产品封装
友情链接