173 2438 5004
KEROS加密芯片——品牌直销 | 免费样品 | 技术支持
当前位置:网站首页 > 资讯中心 正文 资讯中心

对称加密的应用(对称加密软件)

keros@mark 2022-11-11 资讯中心

本篇文章给大家谈谈对称加密的应用,以及对称加密软件对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

对称加密算法的原理应用

对称加密算法的优点在于加解密的高速度和使用长密钥时的难破解性。假设两个用户需要使用对称加密方法加密然后交换数据,则用户最少需要2个密钥并交换使用,如果企业内用户有n个,则整个企业共需要n×(n-1) 个密钥,密钥的生成和分发将成为企业信息部门的恶梦。对称加密算法的安全性取决于加密密钥的保存情况,但要求企业中每一个持有密钥的人都保守秘密是不可能的,他们通常会有意无意的把密钥泄漏出去——如果一个用户使用的密钥被入侵者所获得,入侵者便可以读取该用户密钥加密的所有文档,如果整个企业共用一个加密密钥,那整个企业文档的保密性便无从谈起。DESCryptoServiceProvider

RC2CryptoServiceProvider

RijndaelManaged

TripleDESCryptoServiceProvider

//例加密文本文件(RijndaelManaged )

byte[] key = { 24, 55, 102,24, 98, 26, 67, 29, 84, 19, 37, 118, 104, 85, 121, 27, 93, 86, 24, 55, 102, 24,98, 26, 67, 29, 9, 2, 49, 69, 73, 92 };

byte[] IV ={ 22, 56, 82, 77, 84, 31, 74, 24,55, 102, 24, 98, 26, 67, 29, 99 };

RijndaelManaged myRijndael = new RijndaelManaged();

FileStream fsOut = File.Open(strOutName, FileMode.Create,FileAccess.Write);//strOutName文件名及路径 FileStream fsIn = File.Open(strPath, FileMode.Open,FileAccess.Read);

CryptoStream csDecrypt=new CryptoStream(fsOut,myRijndael.CreateEncryptor(key, IV),CryptoStreamMode.Write);//读加密文本

BinaryReader br = new BinaryReader(fsIn);

csDecrypt.Write(br.ReadBytes((int)fsIn.Length),0, (int)fsIn.Length);

csDecrypt.FlushFinalBlock();

csDecrypt.Close();

fsIn.Close();

fsOut.Close();

//解密文件

byte[] key = { 24, 55, 102, 24, 98, 26, 67, 29, 84, 19, 37, 118,104, 85, 121, 27, 93, 86, 24, 55, 102, 24, 98, 26, 67, 29, 9, 2, 49, 69, 73, 92};

byte[] IV ={ 22, 56, 82, 77, 84, 31, 74, 24, 55, 102, 24, 98, 26,67, 29, 99 };

RijndaelManaged myRijndael = new RijndaelManaged();

FileStream fsOut = File.Open(strPath, FileMode.Open, FileAccess.Read);

CryptoStream csDecrypt = new CryptoStream(fsOut, myRijndael.CreateDecryptor(key,IV), CryptoStreamMode.Read);

StreamReader sr = new StreamReader(csDecrypt);//把文件读出来

StreamWriter sw = new StreamWriter(strInName);//解密后文件写入一个新的文件

sw.Write(sr.ReadToEnd());

sw.Flush();

sw.Close();

sr.Close();f

sOut.Close();

用图片加密(RC2CryptoServiceProvider )

FileStreamfsPic = new FileStream(pictureBox1.ImageLocation,FileMode.Open, FileAccess.Read);

//加密文件流(textBox1.Text是文件名及路径)

FileStream fsText = new FileStream(textBox1.Text, FileMode.Open,FileAccess.Read);

byte[] bykey = new byte[16]; //初始化

Key IVbyte[] byIv = new byte[8];

fsPic.Read(bykey, 0, 16);

fsPic.Read(byIv, 0, 8);

RC2CryptoServiceProvider desc = newRC2CryptoServiceProvider();//desc进行加密

BinaryReader br = new BinaryReader(fsText);//从要加密的文件中读出文件内容

FileStream fsOut = File.Open(strLinPath,FileMode.Create, FileAccess.Write); // strLinPath临时加密文件路径CryptoStream cs = new CryptoStream(fsOut, desc.CreateEncryptor(bykey,byIv), CryptoStreamMode.Write);//写入临时加密文件

cs.Write(br.ReadBytes((int)fsText.Length),0, (int)fsText.Length);//写入加密流

cs.FlushFinalBlock();

cs.Flush();

cs.Close();

fsPic.Close();

fsText.Close();

fsOut.Close();

用图片解密

FileStream fsPic = new FileStream(pictureBox1.ImageLocation, FileMode.Open, FileAccess.Read); //图片流FileStream fsOut = File.Open(textBox1.Text,FileMode.Open, FileAccess.Read);//解密文件流

byte[] bykey = new byte[16]; //初始化

Key IVbyte[] byIv = new byte[8];

fsPic.Read(bykey, 0, 16);

fsPic.Read(byIv, 0, 8);

string strPath = textBox1.Text;//加密文件的路径

int intLent = strPath.LastIndexOf("\\")+ 1;

int intLong = strPath.Length;

string strName = strPath.Substring(intLent, intLong - intLent);//要加密的文件名称

string strLinPath = "C:\\"+ strName;//临时解密文件路径

FileStream fs = new FileStream(strLinPath, FileMode.Create,FileAccess.Write);

RC2CryptoServiceProvider desc = newRC2CryptoServiceProvider();//desc进行解密

CryptoStream csDecrypt = new CryptoStream(fsOut, desc.CreateDecryptor(bykey,byIv), CryptoStreamMode.Read);

//读出加密文件

BinaryReader sr = new BinaryReader(csDecrypt);//从要加密流中读出文件内容

BinaryWriter sw = new BinaryWriter(fs);//写入解密流

sw.Write(sr.ReadBytes(Convert.ToInt32(fsOut.Length)));

//sw.Flush();

sw.Close();

sr.Close();

fs.Close();

fsOut.Close();

fsPic.Close();

csDecrypt.Flush();

File.Delete(textBox1.Text.TrimEnd());//删除原文件

File.Copy(strLinPath, textBox1.Text);//复制加密文件

File.Delete(strLinPath);//删除临时文件

对称加密算法与非对称加密算法的特点及用途

对称加密算法

对称加密算法是应用较早的加密算法,技术成熟。在对称加密算法中,数据发信方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。收信方收到密文后,若想解读原文,则需要使用加密用过的密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密,这就要求解密方事先必须知道加密密钥。

对称加密算法的特点是算法公开、计算量小、加密速度快、加密效率高。不足之处是,交易双方都使用同样钥匙,安全性得不到保证。此外,每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量成几何级数增长,密钥管理成为用户的负担。对称加密算法在分布式网络系统上使用较为困难,主要是因为密钥管理困难,使用成本较高。在计算机专网系统中广泛使用的对称加密算法有des、idea和aes。

不对称加密算法

不对称加密算法使用两把完全不同但又是完全匹配的一对钥匙—公钥和私钥。在使用不对称加密算法加密文件时,只有使用匹配的一对公钥和私钥,才能完成对明文的加密和解密过程。加密明文时采用公钥加密,解密密文时使用私钥才能完成,而且发信方(加密者)知道收信方的公钥,只有收信方(解密者)才是唯一知道自己私钥的人。不对称加密算法的基本原理是,如果发信方想发送只有收信方才能解读的加密信息,发信方必须首先知道收信方的公钥,然后利用收信方的公钥来加密原文;收信方收到加密密文后,使用自己的私钥才能解密密文。显然,采用不对称加密算法,收发信双方在通信之前,收信方必须将自己早已随机生成的公钥送给发信方,而自己保留私钥。由于不对称算法拥有两个密钥,因而特别适用于分布式系统中的数据加密。广泛应用的不对称加密算法有rsa算法和美国国家标准局提出的dsa。以不对称加密算法为基础的加密技术应用非常广泛。

什么是对称密码和非对密码,分析这两种密码体系的特点和应用领域

一、对称密码

1、定义:采用单钥密码系统的加密方法,同一个密钥可以同时用作信息的加密和解密,这种加密方法称为对称加密,也称为单密钥加密。

2、特点:算法公开、计算量小、加密速度快、加密效率高。

3、应用领域:由于其速度快,对称性加密通常在消息发送方需要加密大量数据时使用。

二、非对密码

1、定义:非对称密码指的是非对称密码体制中使用的密码。

2、特点:

(1)是加密密钥和解密密钥不同 ,并且难以互推 。

(2)是有一个密钥是公开的 ,即公钥 ,而另一个密钥是保密的 ,即私钥。

3、应用领域:很好的解决了密钥的分发和管理的问题 ,并且它还能够实现数字签名。

扩展资料

对称加密算法特征

1、加密方和解密方使用同一个密钥;

2、加密解密的速度比较快,适合数据比较长时的使用;

3、密钥传输的过程不安全,且容易被破解,密钥管理也比较麻烦

参考资料来源:百度百科——非对称密码

参考资料来源:百度百科——对称加密

常用的对称加密算法有哪些?

对称加密算法用来对敏感数据等信息进行加密,常用的算法包括:

DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合。

3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高。

AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高。

对称加密算法:

对称加密算法是应用较早的加密算法,技术成熟。在对称加密算法中,数据发信方将明文(原始数据)和加密密钥(mi yue)一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。

加密技术分为哪两类

加密技术分为:

1、对称加密

对称加密采用了对称密码编码技术,它的特点是文件加密和解密使用相同的密钥,即加密密钥也可以用作解密密钥,这种方法在密码学中叫做对称加密算法,对称加密算法使用起来简单快捷,密钥较短,且破译困难

2、非对称

1976年,美国学者Dime和Henman为解决信息公开传送和密钥管理问题,提出一种新的密钥交换协议,允许在不安全的媒体上的通讯双方交换信息,安全地达成一致的密钥,这就是“公开密钥系统”。

加密技术的功能:

原有的单密钥加密技术采用特定加密密钥加密数据,而解密时用于解密的密钥与加密密钥相同,这称之为对称型加密算法。采用此加密技术的理论基础的加密方法如果用于网络传输数据加密,则不可避免地出现安全漏洞。

区别于原有的单密钥加密技术,PKI采用非对称的加密算法,即由原文加密成密文的密钥不同于由密文解密为原文的密钥,以避免第三方获取密钥后将密文解密。

以上内容参考:百度百科—加密技术

对称加密算法的应用模式

加密模式(英文名称及简写)

中文名称

Electronic

Code

Book(ECB)

电子密码本模式

Cipher

Block

Chaining(CBC)

密码分组链接模式

Cipher

Feedback

Mode(CFB)

加密反馈模式

Output

Feedback

Mode(OFB)

输出反馈模式

ECB:最基本的加密模式,也就是通常理解的加密,相同的明文将永远加密成相同的密文,无初始向量,容易受到密码本重放攻击,一般情况下很少用。

CBC:明文被加密前要与前面的密文进行异或运算后再加密,因此只要选择不同的初始向量,相同的密文加密后会形成不同的密文,这是目前应用最广泛的模式。CBC加密后的密文是上下文相关的,但明文的错误不会传递到后续分组,但如果一个分组丢失,后面的分组将全部作废(同步错误)。

CFB:类似于自同步序列密码,分组加密后,按8位分组将密文和明文进行移位异或后得到输出同时反馈回移位寄存器,优点最小可以按字节进行加解密,也可以是n位的,CFB也是上下文相关的,CFB模式下,明文的一个错误会影响后面的密文(错误扩散)。

OFB:将分组密码作为同步序列密码运行,和CFB相似,不过OFB用的是前一个n位密文输出分组反馈回移位寄存器,OFB没有错误扩散问题。

对称加密的应用的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于对称加密软件、对称加密的应用的信息别忘了在本站进行查找喔。

本文标签:对称加密的应用

产品列表
产品封装
友情链接