173 2438 5004
KEROS加密芯片——品牌直销 | 免费样品 | 技术支持
当前位置:网站首页 > 资讯中心 正文 资讯中心

aes加密结构与解密结构

keros@mark 2022-10-24 资讯中心

很高兴和大家一起分享aes加密结构与解密结构的知识,希望对各位有所帮助。

本文目录一览

aes加密算法原理

aes是分组密钥,算法输入128位数据,密钥长度也是128位。用Nr表示对一个数据分组加密的轮数(加密轮数与密钥长度的关系如表1所列)。每一轮都需要一个与输入分组具有相同长度的扩展密钥Expandedkey(i)的参与。由于外部输入的加密密钥K长度有限,所以在算法中要用一个密钥扩展程序(Keyexpansion)把外部密钥K扩展成更长的比特串,以生成各轮的加密和解密密钥。

1.1圈变化

aes每一个圈变换由以下三个层组成:

非线性层——进行Subbyte变换;

线行混合层——进行ShiftRow和MixColumn运算;

密钥加层——进行AddRoundKey运算。

① Subbyte变换是作用在状态中每个字节上的一种非线性字节转换,可以通过计算出来的S盒进行映射。

② ShiftRow是一个字节换位。它将状态中的行按照不同的偏移量进行循环移位,而这个偏移量也是根据Nb的不同而选择的[3]。

③ 在MixColumn变换中,把状态中的每一列看作GF(28)上的多项式a(x)与固定多项式c(x)相乘的结果。 b(x)=c(x)*a(x)的系数这样计算:

*运算不是普通的乘法运算,而是特殊的运算,即 b(x)=c(x)·a(x)(mod x4+1) 对于这个运算 b0=02。a0+03。a1+a2+a3 令xtime(a0)=02。a0

其中,符号“。”表示模一个八次不可约多项式的同余乘法[3]。

对于逆变化,其矩阵C要改变成相应的D,即b(x)=d(x)*a(x)。

④ 密钥加层运算(addround)是将圈密钥状态中的对应字节按位“异或”。

⑤ 根据线性变化的性质[1],解密运算是加密变化的逆变化。

aes是什么意思?

aes的意思:aes技术是一种对称的分组加密技术,使用128位分组加密数据,提供比WEP/TKIPS的RC4算法更高的加密强度。

aes的加密码表和解密码表是分开的,并且支持子密钥加密,这种做法优于以前用一个特殊的密钥解密的做法。aes算法支持任意分组大小,初始时间快。特别是它具有的并行性可以有效地利用处理器资源。

aes特点:

aes具有应用范围广、等待时间短、相对容易隐藏、吞吐量高等优点,在性能等各方面都优于WEP算法。利用此算法加密,WLAN的安全性将会获得大幅度提高。

aes算法已经在802.11i标准中得到最终确认,成为取代WEP的新一代的加密算法。但是由于aes算法对硬件要求比较高,因此aes无法通过在原有设备上升级固件实现,必须重新设计芯片。

aes算法是什么?

是;

aes:Advanced Encryption Standard(高级加密标准),是美国国家标准与技术研究所用于加密电子数据的规范,该算法汇聚了设计简单、密钥安装快、需要的内存空间少、在所有的平台上运行良好、支持并行处理并且可以抵抗所有已知攻击等优点。 

aes是一个迭代的、对称密钥分组的密码,它可以使用128、192 和 256 位密钥,并且用 128 位(16字节)分组加密和解密数据。

相关如下

aes具有应用范围广

等待时间短、相对容易隐藏、吞吐量高等优点,在性能等各方面都优于WEP算法。利用此算法加密,WLAN的安全性将会获得大幅度提高。aes算法已经在802.11i标准中得到最终确认,成为取代WEP的新一代的加密算法。但是由于aes算法对硬件要求比较高,因此aes无法通过在原有设备上升级固件实现,必须重新设计芯片。

aes加解密使用总结

aes, 高级加密标准, 是采用区块加密的一种标准, 又称Rijndael加密法. 严格上来讲, aes和Rijndael又不是完全一样, aes的区块长度固定为128比特, 秘钥长度可以是128, 192或者256. Rijndael加密法可以支持更大范围的区块和密钥长度, Rijndael使用的密钥和区块长度均可以是128,192或256比特. aes是对称加密最流行的算法之一.

我们不去讨论具体的aes的实现, 因为其中要运用到大量的高等数学知识, 单纯的了解aes流程其实也没什么意义(没有数学基础难以理解), 所以我们今天着重来总结一些使用过程中的小点.

当然了分组密码的加密模式不仅仅是ECB和CBC这两种, 其他的我们暂不涉及.

上面说的aes是一种区块加密的标准, 那加密模式其实可以理解为处理不同区块的方式和联系.

ECB可以看做最简单的模式, 需要加密的数据按照区块的大小分为N个块, 并对每个块独立的进行加密

此种方法的缺点在于同样的明文块会被加密成相同的密文块, 因此, 在某些场合, 这种方法不能提供严格的数据保密性. 通过下面图示例子大家就很容易明白了

我们的项目中使用的就是这种模式, 在CBC模式中, 每个明文块与前一个块的加密结果进行异或后, 在进行加密, 所以每个块的加密都依赖前面块的加密结果的, 同时为了保证第一个块的加密, 在第一个块中需要引入初始化向量iv.

CBC是最常用的模式. 他的缺点是加密过程只能是串行的, 无法并行, 因为每个块的加密要依赖到前一个块的加密结果, 同时在加密的时候明文中的细微改变, 会导致后面所有的密文块都发生变化. 但此种模式也是有优点的, 在解密的过程中, 每个块的解密依赖上一个块的加密结果, 所以我们要解密一个块的时候, 只需要把他前面一个块也一起读取, 就可以完成本块的解密, 所以这个过程是可以并行操作的.

aes加密每个块blockSize是128比特, 那如果我们要加密的数据不是128比特的倍数, 就会存在最后一个分块不足128比特, 那这个块怎么处理, 就用到了填充模式. 下面是常用的填充模式.

PKCS7可用于填充的块大小为1-255比特, 填充方式也很容易理解, 使用需填充长度的数值paddingSize 所表示的ASCII码 paddingChar = chr(paddingSize)对数据进行冗余填充. (后面有解释)

PKCS5只能用来填充8字节的块

我们以aes(128)为例, 数据块长度为128比特, 16字节, 使用PKCS7填充时, 填充长度为1-16. 注意, 当加密长度是16整数倍时, 反而填充长度是最大的, 要填充16字节. 原因是 "PKCS7" 拆包时会按协议取最后一个字节所表征的数值长度作为数据填充长度, 如果因真实数据长度恰好为16的整数倍而不进行填充, 则拆包时会导致真实数据丢失.

举一个blockSize为8字节的例子

第二个块中不足8字节, 差4个字节, 所以用4个4来填充

严格来讲 PKCS5不能用于aes, 因为aes最小是128比特(16字节), 只有在使用DES此类blockSize为64比特算法时, 考虑使用PKCS5

我们的项目最开始加解密库使用了CryptoSwift, 后来发现有性能问题, 就改为使用IDZSwiftCommonCrypto.

这里咱们结合项目中边下边播边解密来提一个点, 具体的可以参考之前写的 边下边播的总结 . 因为播放器支持拖动, 所以我们在拖拽到一个点, 去网络拉取对应数据时, 应做好range的修正, 一般我们都会以range的start和end为基准, 向前后找到包含这个range的所有块范围. 打比方说我们需要的range时10-20, 这是我们应该修正range为0-31, 因为起点10在0-15中, 20 在16-31中. 这是常规的range修正.(第一步 找16倍数点).

但是在实际中, 我们请求一段数据时, 还涉及到解密器的初始化问题, 如果我们是请求的0-31的数据, 因为是从0开始, 所以我们的解密器只需要用key和初始的iv来进行初始化, 那如果经过了第一步的基本range修正后, 我们请求的数据不是从0开始, 那我们则还需要继续往前读取16个字节的数据, 举个例子, 经过第一步修正后的range为16-31, 那我们应该再往前读取16字节, 应该是要0-31 这32个字节数据, 拿到数据后,使用前16个字节(上一个块的密文)当做iv来初始化解密器.

还有一个要注意的点是, 数据解密的过程中, 还有可能会吞掉后面16个字节的数据, 我暂时没看源码, 不知道具体因为什么, 所以保险起见, 我们的range最好是再向后读取6个字节.

感谢阅读

参考资料

产品的开发快则一个月,慢则一年,那么如何杜绝市面上各种山寨也成为了我们必须要关注的问题,加密芯片可以做到这点,在保障开发者权益的同时也保护了消费者权益,KEROS加密芯片作为该领域的领头者,一直在尽力贡献一份力。特点如下:接口:标准I2C协议接口;算法: 标准aes256 / KAS算法;特殊接口:Random Stream Cipher for Interface;工作温度:工业级 -40℃ ~+85℃;频率:400Khz;存储:2K字节EEPROM(可选);电压:1.8V~3.6V;封装:SOT23-6,SOP8,TDFN-6。aes加密结构与解密结构的介绍就聊到这里吧,感谢你花时间阅读本站内容,谢谢。

本文标签:aes加密结构与解密结构

产品列表
产品封装
友情链接