173 2438 5004
KEROS加密芯片——品牌直销 | 免费样品 | 技术支持
当前位置:网站首页 > 资讯中心 正文 资讯中心

aes前后端加密解密流程

keros@mark 2022-10-27 资讯中心

本文目录一览

aes加解密使用总结

aes, 高级加密标准, 是采用区块加密的一种标准, 又称Rijndael加密法. 严格上来讲, aes和Rijndael又不是完全一样, aes的区块长度固定为128比特, 秘钥长度可以是128, 192或者256. Rijndael加密法可以支持更大范围的区块和密钥长度, Rijndael使用的密钥和区块长度均可以是128,192或256比特. aes是对称加密最流行的算法之一.

我们不去讨论具体的aes的实现, 因为其中要运用到大量的高等数学知识, 单纯的了解aes流程其实也没什么意义(没有数学基础难以理解), 所以我们今天着重来总结一些使用过程中的小点.

当然了分组密码的加密模式不仅仅是ECB和CBC这两种, 其他的我们暂不涉及.

上面说的aes是一种区块加密的标准, 那加密模式其实可以理解为处理不同区块的方式和联系.

ECB可以看做最简单的模式, 需要加密的数据按照区块的大小分为N个块, 并对每个块独立的进行加密

此种方法的缺点在于同样的明文块会被加密成相同的密文块, 因此, 在某些场合, 这种方法不能提供严格的数据保密性. 通过下面图示例子大家就很容易明白了

我们的项目中使用的就是这种模式, 在CBC模式中, 每个明文块与前一个块的加密结果进行异或后, 在进行加密, 所以每个块的加密都依赖前面块的加密结果的, 同时为了保证第一个块的加密, 在第一个块中需要引入初始化向量iv.

CBC是最常用的模式. 他的缺点是加密过程只能是串行的, 无法并行, 因为每个块的加密要依赖到前一个块的加密结果, 同时在加密的时候明文中的细微改变, 会导致后面所有的密文块都发生变化. 但此种模式也是有优点的, 在解密的过程中, 每个块的解密依赖上一个块的加密结果, 所以我们要解密一个块的时候, 只需要把他前面一个块也一起读取, 就可以完成本块的解密, 所以这个过程是可以并行操作的.

aes加密每个块blockSize是128比特, 那如果我们要加密的数据不是128比特的倍数, 就会存在最后一个分块不足128比特, 那这个块怎么处理, 就用到了填充模式. 下面是常用的填充模式.

PKCS7可用于填充的块大小为1-255比特, 填充方式也很容易理解, 使用需填充长度的数值paddingSize 所表示的ASCII码 paddingChar = chr(paddingSize)对数据进行冗余填充. (后面有解释)

PKCS5只能用来填充8字节的块

我们以aes(128)为例, 数据块长度为128比特, 16字节, 使用PKCS7填充时, 填充长度为1-16. 注意, 当加密长度是16整数倍时, 反而填充长度是最大的, 要填充16字节. 原因是 "PKCS7" 拆包时会按协议取最后一个字节所表征的数值长度作为数据填充长度, 如果因真实数据长度恰好为16的整数倍而不进行填充, 则拆包时会导致真实数据丢失.

举一个blockSize为8字节的例子

第二个块中不足8字节, 差4个字节, 所以用4个4来填充

严格来讲 PKCS5不能用于aes, 因为aes最小是128比特(16字节), 只有在使用DES此类blockSize为64比特算法时, 考虑使用PKCS5

我们的项目最开始加解密库使用了CryptoSwift, 后来发现有性能问题, 就改为使用IDZSwiftCommonCrypto.

这里咱们结合项目中边下边播边解密来提一个点, 具体的可以参考之前写的 边下边播的总结 . 因为播放器支持拖动, 所以我们在拖拽到一个点, 去网络拉取对应数据时, 应做好range的修正, 一般我们都会以range的start和end为基准, 向前后找到包含这个range的所有块范围. 打比方说我们需要的range时10-20, 这是我们应该修正range为0-31, 因为起点10在0-15中, 20 在16-31中. 这是常规的range修正.(第一步 找16倍数点).

但是在实际中, 我们请求一段数据时, 还涉及到解密器的初始化问题, 如果我们是请求的0-31的数据, 因为是从0开始, 所以我们的解密器只需要用key和初始的iv来进行初始化, 那如果经过了第一步的基本range修正后, 我们请求的数据不是从0开始, 那我们则还需要继续往前读取16个字节的数据, 举个例子, 经过第一步修正后的range为16-31, 那我们应该再往前读取16字节, 应该是要0-31 这32个字节数据, 拿到数据后,使用前16个字节(上一个块的密文)当做iv来初始化解密器.

还有一个要注意的点是, 数据解密的过程中, 还有可能会吞掉后面16个字节的数据, 我暂时没看源码, 不知道具体因为什么, 所以保险起见, 我们的range最好是再向后读取6个字节.

感谢阅读

参考资料

如何使用aes在一个程序中加密,在另一个程序中解密

1.程序加密可结合aes算法,在程序运行中,通过外部芯片中的aes密钥,加密数据来验证双方的正确性,称之为对比认证。

2.加密数据传输过程中,可通过aes加密后形成密文传输,到达安全端后再进行解密,实现数据传输安全控制。

3.综合1和2,当前高大上的方式是程序加密可进行移植到加密芯片,存储在加密芯片中,运行也在加密芯片内部运行,输入数据参数,返回执行结果,同时辅助以aes加密和认证,实现数据程序的全方位防护

des和aes 加解密算法具体步骤?有例子最好

随着计算机网络和计算机通讯技术的发展,计算机密码学得到前所未有的重视并迅速普及和发展起来。由于密码系统的各种性能主要由密码算法所决定,不同的算法决定了不同的密码体制,而不同的密码体制又有着不同的优缺点:有的密码算法高速简便,但加解密密钥相同,密钥管理困难;有的密码算法密钥管理方便安全,但计算开销大、处理速度慢。基于此,本文针对两种典型的密码算法DES和RSA的特点进行讨论分析,并提出一种以这两种密码体制为基础的混合密码系统,来实现优势互补。

1 密码系统简介

1.1 密码系统分类

密码系统从原理上可分为两大类,即单密钥系统和双密钥系统。单密钥系统又称为对称密码系统,其加密密钥和解密密钥或者相同,或者实质上相同,即易于从一个密钥得出另一个,如图1所示。双密钥系统又称为公开密钥密码系统,它有两个密钥,一个是公开的,用K1表示,谁都可以使用;另一个是私人密钥,用K2表示,只由采用此系统的人掌握。从公开的密钥推不出私人密钥,如图2所示。

1.2 两种密码系统分析

1.2.1 对称密码系统(单钥密码系统)

对称密码系统中加密和解密均采用同一把密钥,而且通信双方必须都要获得这把密钥。这就带来了一系列问题。首先,密钥本身的发送就存在着风险,如果在发送中丢失,接受方就不可能重新得到密文的内容;其次,多人通信时密钥的组合的数量会出现爆炸性的膨胀,N个人两两通信,需要N*(N-1)/2把密钥,增加了分发密钥的代价和难度;最后,由于通信双方必须事先统一密钥,才能发送保密的信息,这样,陌生人之间就无法发送密文了。

1.2.2 公开密钥密码系统(双钥密码系统)

公开密钥密码系统中,收信人生成两把数学上关联但又不同的公钥和私钥,私钥自己保存,把公钥公布出去,发信人使用收信人的公钥对通信文件进行加密,收信人收到密文后用私钥解密。公开密钥密码系统的优势在于,首先,用户可以把用于加密的钥匙公开地发给任何人,并且除了持有私有密钥的收信人之外,无人能解开密文;其次,用户可以把公开钥匙发表或刊登出来,使得陌生人之间可以互发保密的通信;最后,公开密钥密码系统提供了数字签字的公开鉴定系统,而这是对称密码系统不具备的。

1.3 典型算法

对称密码系统的算法有DES,aes,RC系列,DEA等,公开密钥密码系统的算法有RSA,Diffie-Hellman, Merkle-Hellman等。

2 DES算法

DES (Data Encryption Standard,数据加密标准)是一个分组加密算法,它以64 bit位(8 byte)为分组对数据加密,其中有8 bit奇偶校验,有效密钥长度为56 bit。64 位一组的明文从算法的一端输入,64 位的密文从另一端输出。DES算法的加密和解密用的是同一算法,它的安全性依赖于所用的密钥。DES 对64位的明文分组进行操作,通过一个初始置换,将明文分组成左半部分和右半部分,各32位长。然后进行16轮完全相同的运算,这些运算被称为函数f,在运算过程中数据与密钥结合。经过16轮后,左、右半部分合在一起经过一个末置换(初始置换的逆置换),完成算法。在每一轮中,密钥位移位,然后再从密钥的56位中选出48位。通过一个扩展置换将数据的右半部分扩展成48位,并通过一个异或操作与48位密钥结合,通过8个s盒将这48位替代成新的32位数据,再将其置换一次。这些运算构成了函数f。然后,通过另一个异或运算,函数f输出与左半部分结合,其结果即成为新的右半部分, 原来的右半部分成为新的左半部分。将该操作重复16次,实现DES的16轮运算。

3 RSA算法

RSA算法使用两个密钥,一个公共密钥,一个私有密钥。如用其中一个加密,则可用另一个解密。密钥长度从40到2048 bit可变。加密时把明文分成块,块的大小可变,但不能超过密钥的长度,RSA算法把每一块明文转化为与密钥长度相同的密文块。密钥越长,加密效果越好,但加密解密的开销也大,所以要在安全与性能之间折衷考虑,一般64位是较合适的。RSA算法利用了陷门单向函数的一种可逆模指数运算,描述如下:(1)选择两个大素数p和q;(2)计算乘积n=pq和φ(n)=(p-1)(q-1);(3)选择大于1小于φ(n)的随机整数e,使得

gcd(e,φ(n))=1;(4)计算d使得de=1modφ(n);(5)对每一个密钥k=(n,p,q,d,e),定义加密变换为Ek(x)=xemodn,解密变换为Dk(y)=ydmodn,这里x,y∈Zn;(6)以{e,n}为公开密钥,{p,q,d}为私有密钥。

4 基于DES和RSA的混合密码系统

4.1 概述

混合密码系统充分利用了公钥密码和对称密码算法的优点,克服其缺点,解决了每次传送更新密钥的问题。发送者自动生成对称密钥,用对称密钥按照DES算法加密发送的信息,将生成的密文连同用接受方的公钥按照RSA算法加密后的对称密钥一起传送出去。收信者用其密钥按照RSA算法解密被加密的密钥来得到对称密钥,并用它来按照DES算法解密密文。

4.2 具体实现步骤

(1)发信方选择对称密钥K(一般为64位,目前可以达到192位)

(2)发信方加密消息:对明文按64位分组进行操作,通过一个初始置换,将明文分组成左半部分和右半部分。然后进行16轮完全相同的运算,最后,左、右半部分合在一起经过一个末置换(初始置换的逆置换),完成算法。在每一轮中,密钥位移位,然后再从密钥的56位中选出48位。通过一个扩展置换将数据的右半部分扩展成48位,并通过一个异或操作与48位密钥结合,通过8个S盒将这48位替代成新的32位数据,再将其置换一次。然后通过另一个异或运算,输出结果与左半部分结合,其结果即成为新的右半部分,原来的右半部分成为新的左半部分。如图3所示。

(3)收信方产生两个足够大的强质数p、q,计算n=p×q和z=(p-1)×(q-1),然后再选取一个与z互素的奇数e,从这个e值找出另一个值d,使之满足e×d=1 mod (z)条件。以两组数(n,e) 和 (n,d)分别作为公钥和私钥。收信方将公钥对外公开,从而收信方可以利用收信方的公钥对 (1)中产生的对称密钥的每一位x进行加密变换Ek(x)=xemodn;

(4)发信方将步骤(2)和(3)中得到的消息的密文和对称密钥的密文一起发送给收信方;

(5)收信方用(3)中得到的私钥来对对称密钥的每一位y进行解密变换Dk(y)=ydmodn,从而得到(1)中的K;

(6)收信方用对称密钥K和DES算法的逆步骤来对消息进行解密,具体步骤和(2)中恰好相反,也是有16轮迭代。

(7)既可以由收信方保留对称密钥K来进行下一次数据通信,也可以由收信方产生新的对称密钥,从而使K作废。

4.3 两点说明

4.3.1 用公钥算法加密密钥

在混合密码系统中,公开密钥算法不用来加密消息,而用来加密密钥,这样做有两个理由:第一,公钥算法比对称算法慢,对称算法一般比公钥算法快一千倍。计算机在大约15年后运行公开密钥密码算法的速度才能比得上现在计算机运行对称密码的速度。并且,随着带宽需求的增加,比公开密钥密码处理更快的加密数据要求越来越多。第二,公开密钥密码系统对选择明文攻击是脆弱的。密码分析者只需要加密所有可能的明文,将得到的所有密文与要破解的密文比较,这样,虽然它不可能恢复解密密钥,但它能够确定当前密文所对应的明文。

4.3.2 安全性分析

如果攻击者无论得到多少密文,都没有足够的信息去恢复明文,那么该密码系统就是无条件安全的。在理论上,只有一次一密的系统才能真正实现这一点。而在本文所讨论的混合密码系统中,发信方每次可以自由选择对称密钥来加密消息,然后用公钥算法来加密对称密钥,即用户可以采用一次一密的方式来进行数据通信,达到上述的无条件安全。

5 小结

基于DES和RSA的混合密码系统结合了公钥密码体制易于密钥分配的特点和对称密码体制易于计算、速度快的特点,为信息的安全传输提供了良好的、快捷的途径,使数据传输的密文被破解的几率大大降低,从而对数据传输的安全性形成更有力的保障,并且发信方和收信方对密钥的操作自由度得到了很大的发挥。

智能化时代的到来涉及了各种核心算法,保护算法就能保障开发者权益,杜绝市面上各种山寨品,加密芯片恰好能起到很好的保护作用,如何选择加密芯片呢?KEROS加密芯片专注于加密领域十余年,行业首选。
1.安全性:采用国际通用aes256算法加密并同时通过KAS传送,除基本认证之外,利用2K安全EEPROM,用户可以自己管理密钥和数据,实现双重保护。
2.唯一性:以定制的方式为每一位用户单独定制“专属型号CID”,多用户之间算法不兼容,并且采用固化的方法直接将算法固化到晶圆上而无需烧入。
3.序列号:每颗芯片制造生产时具有5字节全球唯一SN序列号,每颗芯片SN都不会重复。
4.防抄特性:每颗芯片都有自己独特的密钥系统,破解单颗芯片只对这颗芯片对应的产品有效,对整个同类型的产品是无效的,依旧无法通过验证。而且KEROS采用ASIC方法设计,芯片内为纯逻辑电路,封装内有40多层逻辑电路整合了10万多个逻辑门,爆力刨片破解难度可想而知。
5.安全存储:用户可以将保密数据加密之后安全的存放到EEPROM中。aes前后端加密解密流程的介绍就聊到这里吧,感谢你花时间阅读本站内容。

本文标签:aes前后端加密解密流程

产品列表
产品封装
友情链接