173 2438 5004
KEROS加密芯片——品牌直销 | 免费样品 | 技术支持
当前位置:网站首页 > 资讯中心 正文 资讯中心

对称加密技术原理是什么

keros@mark 2022-10-27 资讯中心

很高兴和大家一起分享对称加密技术原理是什么的知识,希望对各位有所帮助。

本文目录一览

什么是对称密码技术?

对称加密采用了对称密码编码技术,它的特点是文件加密和解密使用相同的密钥,即加密密钥也可以用作解密密钥,这种方法在密码学中叫做对称加密算法, 对称加密算法使用起来简单快捷,密钥较短,且破译困难,除了数据加密标准(DES),另一个对称密钥加密系统是国际数据加密算法(IDEA),它比DES 的加密性好,而且对计算机功能要求也没有那么高。IDEA加密标准由PGP(Pretty Good Privacy)系统使用。

对称加密算法在电子商务交易过程中存在几个问题:

要求提供一条安全的渠道使通讯双方在首次通讯时协商一个共同的密钥。直接的面对面协商可能是不现实而且难于实施的,所以双方可能需要借助于邮件和电话等其它相对不够安全的手段来进行协商;

密钥的数目难于管理。因为对于每一个合作者都需要使用不同的密钥,很难适应开放社会中大量的信息交流;

对称加密算法一般不能提供信息完整性的鉴别。它无法验证发送者和接受者的身份;

对称密钥的管理和分发工作是一件具有潜在危险的和烦琐的过程。对称加密是基于共同保守秘密来实现的,采用对称加密技术的贸易双方必须保证采用的是相同的密钥,保证彼此密钥的交换是安全可靠的,同时还要设定防止密钥泄密和更改密钥的程序。

简要说说对称加密和非对称加密的原理以及区别是什么

对称加密的原理是数据发送方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。接收方收到密文后,若想解读原文,则需要使用加密密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。

非对称加密的原理是甲方首先生成一对密钥同时将其中的一把作为公开密钥;得到公开密钥的乙方再使用该密钥对需要加密的信息进行加密后再发送给甲方;甲方再使用另一把对应的私有密钥对加密后的信息进行解密,这样就实现了机密数据传输。

对称加密和非对称加密的区别为:密钥不同、安全性不同、数字签名不同。

一、密钥不同

1、对称加密:对称加密加密和解密使用同一个密钥。

2、非对称加密:非对称加密加密和解密所使用的不是同一个密钥,需要两个密钥来进行加密和解密。

二、安全性不同

1、对称加密:对称加密如果用于通过网络传输加密文件,那么不管使用任何方法将密钥告诉对方,都有可能被窃听。

2、非对称加密:非对称加密因为它包含有两个密钥,且仅有其中的“公钥”是可以被公开的,接收方只需要使用自己已持有的私钥进行解密,这样就可以很好的避免密钥在传输过程中产生的安全问题。

三、数字签名不同

1、对称加密:对称加密不可以用于数字签名和数字鉴别。

2、非对称加密:非对称加密可以用于数字签名和数字鉴别。

简述对称加密算法的基本原理

不对称加密算法使用两把完全不同但又是完全匹配的一对钥匙—公钥和私钥。在使用不对称加密算法加密文件时,只有使用匹配的一对公钥和私钥,才能完成对明文的加密和解密过程。~~~ ~ 加密明文时采用公钥加密,解密密文时使用私钥才能完成,而且发信方(加密者)知道收信方的公钥,只有收信方(解密者)才是唯一知道自己私钥的人。不对称加密算法的基本原理是,如果发信方想发送只有收信方才能解读的加密信息,发信方必须首先知道收信方的公钥,然后利用收信方的公钥来加密原文; 收信方收到加密密文后,使用自己的私钥才能解密密文。显然,采用不对称加密算法,收发信双方在通信之前,收信方必须将自己早已随机生成的公钥送给发信方,而自己保留私钥。由于不对称算法拥有两个密钥,因而特别适用于分布式系统中的数据加密。 广泛应用的不对称加密算法有RSA算法和美国国家标准局提出的DSA。以不对称加密算法为基础的加密技术应用非常广泛。~~~ OK

什么是对称加密技术?

对称加密采用了对称密码编码技术,它的特点是文件加密和解密使用相同的密钥,即加密密钥也可以用作解密密钥,这种方法在密码学中叫做对称加密算法, 对称加密算法使用起来简单快捷,密钥较短,且破译困难,除了数据加密标准(DES),另一个对称密钥加密系统是国际数据加密算法(IDEA),它比DES 的加密性好,而且对计算机功能要求也没有那么高。IDEA加密标准由PGP(Pretty Good Privacy)系统使用。

对称加密算法在电子商务交易过程中存在几个问题:

要求提供一条安全的渠道使通讯双方在首次通讯时协商一个共同的密钥。直接的面对面协商可能是不现实而且难于实施的,所以双方可能需要借助于邮件和电话等其它相对不够安全的手段来进行协商;

密钥的数目难于管理。因为对于每一个合作者都需要使用不同的密钥,很难适应开放社会中大量的信息交流;

对称加密算法一般不能提供信息完整性的鉴别。它无法验证发送者和接受者的身份;

对称密钥的管理和分发工作是一件具有潜在危险的和烦琐的过程。对称加密是基于共同保守秘密来实现的,采用对称加密技术的贸易双方必须保证采用的是相同的密钥,保证彼此密钥的交换是安全可靠的,同时还要设定防止密钥泄密和更改密钥的程序。

加密技术02-对称加密-aes原理

aes 全称 Advanced Encryption Standard(高级加密标准)。它的出现主要是为了取代 DES 加密算法的,因为 DES 算法的密钥长度是 56 位,因此算法的理论安全强度是 2^56。但二十世纪中后期正是计算机飞速发展的阶段,元器件制造工艺的进步使得计算机的处理能力越来越强,所以还是不能满足人们对安全性的要求。于是 1997 年 1 月 2 号,美国国家标准技术研究所宣布希望征集高级加密标准,用以取代 DES。aes 也得到了全世界很多密码工作者的响应,先后有很多人提交了自己设计的算法。最终有5个候选算法进入最后一轮:Rijndael,Serpent,Twofish,RC6 和 MARS。最终经过安全性分析、软硬件性能评估等严格的步骤,Rijndael 算法获胜。

aes 密码与分组密码 Rijndael 基本上完全一致,Rijndael 分组大小和密钥大小都可以为 128 位、192 位和 256 位。然而 aes 只要求分组大小为 128 位,因此只有分组长度为 128 位的 Rijndael 才称为 aes 算法。本文只对分组大小 128 位,密钥长度也为 128 位的 Rijndael 算法进行分析。密钥长度为 192 位和 256 位的处理方式和 128 位的处理方式类似,只不过密钥长度每增加 64 位,算法的循环次数就增加 2 轮,128 位循环 10 轮、192 位循环 12 轮、256 位循环 14 轮。

给定一个 128 位的明文和一个 128 位的密钥,输出一个 128 位的密文。这个密文可以用相同的密钥解密。虽然 aes 一次只能加密 16 个字节,但我们只需要把明文划分成每 16 个字节一组的块,就可以实现任意长度明文的加密。如果明文长度不是 16 个字节的倍数,则需要填充,目前填充方式主要是 PKCS7 / PKCS5。

下来主要分析 16 个字节的加解密过程,下图是 aes 算法框架。

密钥生成流程

G 函数

关于轮常量的生成下文会介绍。

主要作用:一是增加密钥编排中的非线性;二是消除aes中的对称性。这两种属性都是抵抗某些分组密码攻击必要的。

接下来详细解释一下几个关键步骤。

明文矩阵和当前回次的子密钥矩阵进行异或运算。

字节代换层的主要功能是通过 S 盒完成一个字节到另外一个字节的映射。

依次遍历 4 * 4 的明文矩阵 P 中元素,元素高四位值为行号,低四位值为列号,然后在 S 盒中取出对应的值。

行位移操作最为简单,它是用来将输入数据作为一个 4 * 4 的字节矩阵进行处理的,然后将这个矩阵的字节进行位置上的置换。ShiftRows 子层属于 aes 手动的扩散层,目的是将单个位上的变换扩散到影响整个状态当,从而达到雪崩效应。它之所以称作行位移,是因为它只在 4 * 4 矩阵的行间进行操作,每行 4 字节的数据。在加密时,保持矩阵的第一行不变,第二行向左移动 1 个字节、第三行向左移动 2 个字节、第四行向左移动 3 个字节。

列混淆层是 aes 算法中最为复杂的部分,属于扩散层,列混淆操作是 aes 算法中主要的扩散元素,它混淆了输入矩阵的每一列,使输入的每个字节都会影响到 4 个输出字节。行位移层和列混淆层的组合使得经过三轮处理以后,矩阵的每个字节都依赖于 16 个明文字节成可能。其实质是在有限域 GF(2^8) 上的多项式乘法运算,也称伽罗瓦域上的乘法。

伽罗瓦域

伽罗瓦域上的乘法在包括加/解密编码和存储编码中经常使用,aes 算法就使用了伽罗瓦域 GF(2^8) 中的运算。以 2^n 形式的伽罗瓦域来说,加减法都是异或运算,乘法相对较复杂一些,下面介绍 GF(2^n) 上有限域的乘法运算。

本原多项式: 域中不可约多项式,是不能够进行因子分解的多项式,本原多项式是一种特殊的不可约多项式。当一个域上的本原多项式确定了,这个域上的运算也就确定了,本原多项式一般通过查表可得,同一个域往往有多个本原多项式。通过将域中的元素化为多项式的形式,可以将域上的乘法运算转化为普通的多项式乘法模以本原多项式的计算。比如 g(x) = x^3+x+1 是 GF(2^3) 上的本原多项式,那么 GF(2^3) 域上的元素 3*7 可以转化为多项式乘法:

乘二运算: 无论是普通计算还是伽罗瓦域上运算,乘二计算是一种非常特殊的运算。普通计算在计算机上通过向高位的移位计算即可实现,伽罗瓦域上乘二也不复杂,一次移位和一次异或即可。从多项式的角度来看,伽罗瓦域上乘二对应的是一个多项式乘以 x,如果这个多项式最高指数没有超过本原多项式最高指数,那么相当于一次普通计算的乘二计算,如果结果最高指数等于本原多项式最高指数,那么需要将除去本原多项式最高项的其他项和结果进行异或。

比如:GF(2^8)(g(x) = x^8 + x^4 + x^3 + x^2 + 1)上 15*15 = 85 计算过程。

15 写成生成元指数和异或的形式 2^3 + 2^2 + 2^1 + 1,那么:

乘二运算计算过程:

列混淆 :就是把两个矩阵的相乘,里面的运算,加法对应异或运算,乘法对应伽罗瓦域 GF(2^8) 上的乘法(本原多项式为:x^8 + x^4 + x^3 + x^1 + 1)。

Galois 函数为伽罗瓦域上的乘法。

解码过程和 DES 解码类似,也是一个逆过程。基本的数学原理也是:一个数进行两次异或运算就能恢复,S ^ e ^ e = S。

密钥加法层

通过异或的特性,再次异或就能恢复原数。

逆Shift Rows层

恢复 Shift Rows层 的移动。

逆Mix Column层

通过乘上正矩阵的逆矩阵进行矩阵恢复。

一个矩阵先乘上一个正矩阵,然后再乘上他的逆矩阵,相当于没有操作。

逆字节代换层

通过再次代换恢复字节代换层的代换操作。

比如:0x00 字节的置换过程

轮常量生成规则如下:

算法原理和 aes128 一样,只是每次加解密的数据和密钥大小为 192 位和 256 位。加解密过程几乎是一样的,只是循环轮数增加,所以子密钥个数也要增加,最后轮常量 RC 长度增加。

随着社会的发展,产品的更新速度也是越来越快,算法是方案的核心,保护开发者和消费者的权益刻不容缓,那么加密芯片在其中就扮演了重要的角色,如何选择加密芯片呢?
1.市面上加密芯片种类繁多,算法多种,加密芯片强度参差不齐,加密性能与算法、秘钥密切相关。常见的加密算法有对称算法,非对称算法,国密算法,大部分都是基于I2C、SPI或1-wire协议进行通信。加密芯片还是需要项目实际需求选择,比如对称加密算法的特点是计算量小、加密速度快、加密效率高等。
2.因为单片机软加密性能较弱且非常容易被复制,所以有了加密芯片的产生,大大增加了破解难度和生产成本。目前加密芯片广泛应用于车载电子、消费电子、美容医疗、工业控制、AI智能等行业。
3.韩国KEROS加密芯片专注加密领域十多年,高安全性、低成本,在加密保护领域受到了众多客户的高度赞扬及认可。KEROS采用先进的内置aes256安全引擎和加密功能,通过真动态数据交互并为系统中敏感信息的存储提供了安全的场所,有了它的保护电路,即使受到攻击,这些信息也可以保持安全。其封装SOP8,SOT23-6,TDFN-6集成I2C与1-wire协议满足不同应用需求。CK02AT、CK22AT、CK02AP、CK22AP支持1.8V-3.6V,256bit位秘钥长度,5bytes SN序列号,支持定制化免烧录,加密行业首选。关于对称加密技术原理是什么的介绍到此就结束了,感谢大家耐心阅读。

本文标签:对称加密技术原理是什么

产品列表
产品封装
友情链接