173 2438 5004
KEROS加密芯片——品牌直销 | 免费样品 | 技术支持
当前位置:网站首页 > 资讯中心 正文 资讯中心

数据加密的概念和方式

keros@mark 2022-10-28 资讯中心

很高兴和大家一起分享数据加密的概念和方式的知识,希望对各位有所帮助。

本文目录一览

什么是数据加密

考虑到用户可能试图旁路系统的情况,如物理地取走数据库,在通讯线路上窃听。对这样的威胁最有效的解决方法就是数据加密,即以加密格式存储和传输敏感数据。

数据加密的术语有:明文,即原始的或未加密的数据。通过加密算法对其进行加密,加密算法的输入信息为明文和密钥;密文,明文加密后的格式,是加密算法的输出信息。加密算法是公开的,而密钥则是不公开的。密文,不应为无密钥的用户理解,用于数据的存储以及传输。

例:明文为字符串:

AS KINGFISHERS CATCH FIRE

(为简便起见,假定所处理的数据字符仅为大写字母和空格符)。假定密钥为字符串:

ELIOT

加密算法为:

1) 将明文划分成多个密钥字符串长度大小的块(空格符以"+"表示)

AS+KI NGFIS HERS+ CATCH +FIRE

2) 用00~26范围的整数取代明文的每个字符,空格符=00,A=01,...,Z=26:

0119001109 1407060919 0805181900 0301200308 0006091805

3) 与步骤2一样对密钥的每个字符进行取代:

0512091520

4) 对明文的每个块,将其每个字符用对应的整数编码与密钥中相应位置的字符的整数编码的和模27后的值取代:

5) 将步骤4的结果中的整数编码再用其等价字符替换:

FDIZB SSOXL MQ+GT HMBRA ERRFY

如果给出密钥,该例的解密过程很简单。问题是对于一个恶意攻击者来说,在不知道密钥的情况下,利用相匹配的明文和密文获得密钥究竟有多困难?对于上面的简单例子,答案是相当容易的,不是一般的容易,但是,复杂的加密模式同样很容易设计出。理想的情况是采用的加密模式使得攻击者为了破解所付出的代价应远远超过其所获得的利益。实际上,该目的适用于所有的安全性措施。这种加密模式的可接受的最终目标是:即使是该模式的发明者也无法通过相匹配的明文和密文获得密钥,从而也无法破解密文。

1. 数据加密标准

传统加密方法有两种,替换和置换。上面的例子采用的就是替换的方法:使用密钥将明文中的每一个字符转换为密文中的一个字符。而置换仅将明文的字符按不同的顺序重新排列。单独使用这两种方法的任意一种都是不够安全的,但是将这两种方法结合起来就能提供相当高的安全程度。数据加密标准(Data Encryption Standard,简称DES)就采用了这种结合算法,它由IBM制定,并在1977年成为美国官方加密标准。

DES的工作原理为:将明文分割成许多64位大小的块,每个块用64位密钥进行加密,实际上,密钥由56位数据位和8位奇偶校验位组成,因此只有256个可能的密码而不是264个。每块先用初始置换方法进行加密,再连续进行16次复杂的替换,最后再对其施用初始置换的逆。第i步的替换并不是直接利用原始的密钥K,而是由K与i计算出的密钥Ki。

DES具有这样的特性,其解密算法与加密算法相同,除了密钥Ki的施加顺序相反以外。

2. 公开密钥加密

多年来,许多人都认为DES并不是真的很安全。事实上,即使不采用智能的方法,随着快速、高度并行的处理器的出现,强制破解DES也是可能的。"公开密钥"加密方法使得DES以及类似的传统加密技术过时了。公开密钥加密方法中,加密算法和加密密钥都是公开的,任何人都可将明文转换成密文。但是相应的解密密钥是保密的(公开密钥方法包括两个密钥,分别用于加密和解密),而且无法从加密密钥推导出,因此,即使是加密者若未被授权也无法执行相应的解密。

公开密钥加密思想最初是由Diffie和Hellman提出的,最著名的是Rivest、Shamir以及Adleman提出的,现在通常称为RSA(以三个发明者的首位字母命名)的方法,该方法基于下面的两个事实:

1) 已有确定一个数是不是质数的快速算法;

2) 尚未找到确定一个合数的质因子的快速算法。

RSA方法的工作原理如下:

1) 任意选取两个不同的大质数p和q,计算乘积r=p*q;

2) 任意选取一个大整数e,e与(p-1)*(q-1)互质,整数e用做加密密钥。注意:e的选取是很容易的,例如,所有大于p和q的质数都可用。

3) 确定解密密钥d:

d * e = 1 modulo(p - 1)*(q - 1)

根据e、p和q可以容易地计算出d。

4) 公开整数r和e,但是不公开d;

5) 将明文P (假设P是一个小于r的整数)加密为密文C,计算方法为:

C = Pe modulo r

6) 将密文C解密为明文P,计算方法为:

P = Cd modulo r

然而只根据r和e(不是p和q)要计算出d是不可能的。因此,任何人都可对明文进行加密,但只有授权用户(知道d)才可对密文解密。

下面举一简单的例子对上述过程进行说明,显然我们只能选取很小的数字。

例:选取p=3, q=5,则r=15,(p-1)*(q-1)=8。选取e=11(大于p和q的质数),通过d * 11 = 1 modulo 8,计算出d =3。

假定明文为整数13。则密文C为

C = Pe modulo r

= 1311 modulo 15

= 1,792,160,394,037 modulo 15

= 7

复原明文P为:

P = Cd modulo r

= 73 modulo 15

= 343 modulo 15

= 13

因为e和d互逆,公开密钥加密方法也允许采用这样的方式对加密信息进行"签名",以便接收方能确定签名不是伪造的。假设A和B希望通过公开密钥加密方法进行数据传输,A和B分别公开加密算法和相应的密钥,但不公开解密算法和相应的密钥。A和B的加密算法分别是ECA和ECB,解密算法分别是DCA和DCB,ECA和DCA互逆,ECB和DCB互逆。若A要向B发送明文P,不是简单地发送ECB(P),而是先对P施以其解密算法DCA,再用加密算法ECB对结果加密后发送出去。密文C为:

C = ECB(DCA(P))

B收到C后,先后施以其解密算法DCB和加密算法ECA,得到明文P:

ECA(DCB(C))

= ECA(DCB(ECB(DCA(P))))

= ECA(DCA(P)) /*DCB和ECB相互抵消*/

= P /*DCB和ECB相互抵消*/

这样B就确定报文确实是从A发出的,因为只有当加密过程利用了DCA算法,用ECA才能获得P,只有A才知道DCA算法,没有人,即使是B也不能伪造A的签名。

数据加密的方法和类型

数据加密方法有链路加密、节点加密和端到端加密。所谓数据加密(Data Encryption)技术是指将一个信息(或称明文,plain text)经过加密钥匙(Encryption key)及加密函数转换,变成无意义的密文(cipher text),而接收方则将此密文经过解密函数、解密钥匙(

数据加密方式有哪些?

对称加密:三重DES、aes、SM4等

非对称加密:RSA、SM2等

其他的保护数据隐私的方法还有同态加密、差分隐私、安全多方计算等

目前我们公司一直和上海安策信息合作的,安策信息研发了好几种数据加密工具,包括加密狗、加密机、动态口令、加密工具等百度也有很多相关资料。

数据加密主要有哪些方式

主要有两种方式:“对称式”和“非对称式”。

对称式加密就是加密和解密使用同一个密钥,通常称之为“Session Key ”这种加密技术目前被广泛采用,如美国政府所采用的DES加密标准就是一种典型的“对称式”加密法,它的Session Key长度为56Bits。

非对称式加密就是加密和解密所使用的不是同一个密钥,通常有两个密钥,称为“公钥”和“私钥”,它们两个必需配对使用,否则不能打开加密文件。这里的“公钥”是指可以对外公布的,“私钥”则不能,只能由持有人一个人知道。它的优越性就在这里,因为对称式的加密方法如果是在网络上传输加密文件就很难把密钥告诉对方,不管用什么方法都有可能被别窃听到。而非对称式的加密方法有两个密钥,且其中的“公钥”是可以公开的,也就不怕别人知道,收件人解密时只要用自己的私钥即可以,这样就很好地避免了密钥的传输安全性问题。

一般的数据加密可以在通信的三个层次来实现:链路加密、节点加密和端到端加密。(3)

链路加密

对于在两个网络节点间的某一次通信链路,链路加密能为网上传输的数据提供安全证。对于链路加密(又称在线加密),所有消息在被传输之前进行加密,在每一个节点对接收到消息进行解密,然后先使用下一个链路的密钥对消息进行加密,再进行传输。在到达目的地之前,一条消息可能要经过许多通信链路的传输。

由于在每一个中间传输节点消息均被解密后重新进行加密,因此,包括路由信息在内的链路上的所有数据均以密文形式出现。这样,链路加密就掩盖了被传输消息的源点与终点。由于填充技术的使用以及填充字符在不需要传输数据的情况下就可以进行加密,这使得消息的频率和长度特性得以掩盖,从而可以防止对通信业务进行分析。

尽管链路加密在计算机网络环境中使用得相当普遍,但它并非没有问题。链路加密通常用在点对点的同步或异步线路上,它要求先对在链路两端的加密设备进行同步,然后使用一种链模式对链路上传输的数据进行加密。这就给网络的性能和可管理性带来了副作用。

在线路/信号经常不通的海外或卫星网络中,链路上的加密设备需要频繁地进行同步,带来的后果是数据丢失或重传。另一方面,即使仅一小部分数据需要进行加密,也会使得所有传输数据被加密。

在一个网络节点,链路加密仅在通信链路上提供安全性,消息以明文形式存在,因此所有节点在物理上必须是安全的,否则就会泄漏明文内容。然而保证每一个节点的安全性需要较高的费用,为每一个节点提供加密硬件设备和一个安全的物理环境所需要的费用由以下几部分组成:保护节点物理安全的雇员开销,为确保安全策略和程序的正确执行而进行审计时的费用,以及为防止安全性被破坏时带来损失而参加保险的费用。

在传统的加密算法中,用于解密消息的密钥与用于加密的密钥是相同的,该密钥必须被秘密保存,并按一定规则进行变化。这样,密钥分配在链路加密系统中就成了一个问题,因为每一个节点必须存储与其相连接的所有链路的加密密钥,这就需要对密钥进行物理传送或者建立专用网络设施。而网络节点地理分布的广阔性使得这一过程变得复杂,同时增加了密钥连续分配时的费用。

节点加密

尽管节点加密能给网络数据提供较高的安全性,但它在操作方式上与链路加密是类似的:两者均在通信链路上为传输的消息提供安全性;都在中间节点先对消息进行解密,然后进行加密。因为要对所有传输的数据进行加密,所以加密过程对用户是透明的。

然而,与链路加密不同,节点加密不允许消息在网络节点以明文形式存在,它先把收到的消息进行解密,然后采用另一个不同的密钥进行加密,这一过程是在节点上的一个安全模块中进行。

节点加密要求报头和路由信息以明文形式传输,以便中间节点能得到如何处理消息的信息。因此这种方法对于防止攻击者分析通信业务是脆弱的。

端到端加密

端到端加密允许数据在从源点到终点的传输过程中始终以密文形式存在。采用端到端加密,消息在被传输时到达终点之前不进行解密,因为消息在整个传输过程中均受到保护,所以即使有节点被损坏也不会使消息泄露。

端到端加密系统的价格便宜些,并且与链路加密和节点加密相比更可靠,更容易设计、实现和维护。端到端加密还避免了其它加密系统所固有的同步问题,因为每个报文包均是独立被加密的,所以一个报文包所发生的传输错误不会影响后续的报文包。此外,从用户对安全需求的直觉上讲,端到端加密更自然些。单个用户可能会选用这种加密方法,以便不影响网络上的其他用户,此方法只需要源和目的节点是保密的即可。

端到端加密系统通常不允许对消息的目的地址进行加密,这是因为每一个消息所经过的节点都要用此地址来确定如何传输消息。由于这种加密方法不能掩盖被传输消息的源点与终点,因此它对于防止攻击者分析通信业务是脆弱的。

智能化时代的到来涉及了各种核心算法,保护算法就能保障开发者权益,杜绝市面上各种山寨品,加密芯片恰好能起到很好的保护作用,如何选择加密芯片呢?KEROS加密芯片专注于加密领域十余年,行业首选。
1.安全性:采用国际通用aes256算法加密并同时通过KAS传送,除基本认证之外,利用2K安全EEPROM,用户可以自己管理密钥和数据,实现双重保护。
2.唯一性:以定制的方式为每一位用户单独定制“专属型号CID”,多用户之间算法不兼容,并且采用固化的方法直接将算法固化到晶圆上而无需烧入。
3.序列号:每颗芯片制造生产时具有5字节全球唯一SN序列号,每颗芯片SN都不会重复。
4.防抄特性:每颗芯片都有自己独特的密钥系统,破解单颗芯片只对这颗芯片对应的产品有效,对整个同类型的产品是无效的,依旧无法通过验证。而且KEROS采用ASIC方法设计,芯片内为纯逻辑电路,封装内有40多层逻辑电路整合了10万多个逻辑门,爆力刨片破解难度可想而知。
5.安全存储:用户可以将保密数据加密之后安全的存放到EEPROM中。数据加密的概念和方式的介绍就聊到这里吧,感谢你花时间阅读本站内容。

本文标签:数据加密的概念和方式

产品列表
产品封装
友情链接