173 2438 5004
KEROS加密芯片——品牌直销 | 免费样品 | 技术支持
当前位置:网站首页 > 资讯中心 正文 资讯中心

加密算法总结报告

keros@mark 2022-10-29 资讯中心

很高兴和大家一起分享加密算法总结报告的知识,希望对各位有所帮助。

本文目录一览

Android加密算法总结

1.概念:

Base64是一种用64个字符(ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/)来表示二进制数据的方法,只是一种编码方式,所以不建议使用Base64来进行加密数据。

2.由来:

为什么会有Base64编码呢?因为计算机中数据是按ascii码存储的,而ascii码的128~255之间的值是不可见字符。在网络上交换数据时,比如图片二进制流的每个字节不可能全部都是可见字符,所以就传送不了。最好的方法就是在不改变传统协议的情况下,做一种扩展方案来支持二进制文件的传送,把不可打印的字符也能用可打印字符来表示,所以就先把数据先做一个Base64编码,统统变成可见字符,降低错误率。

3.示例:

加密和解密用到的密钥是相同的,这种加密方式加密速度非常快,适合经常发送数据的场合。缺点是密钥的传输比较麻烦。

1.DES

DES全称为Data Encryption Standard,即数据加密标准,是一种使用 密钥加密 的块算法。

DES算法把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是64位,密钥事实上是56位参与DES运算(第8、16、24、32、40、48、56、64位是校验位,使得每个密钥都有奇数个1)分组后的明文组和56位的密钥按位替代或交换的方法形成密文组的加密方法。

2.3DES

3DES(或称为Triple DES)是三重 数据加密算法 (TDEA,Triple Data Encryption Algorithm)块密码的通称。是DES向aes过渡的加密算法,它使用3条56位的密钥对数据进行三次加密。是DES的一个更安全的变形。它以DES为基本模块,通过组合分组方法设计出分组加密算法。比起最初的DES,3DES更为安全。

3.aes

aes全称Advanced Encryption Standard,即高级加密标准,当今最流行的对称加密算法之一,是DES的替代者。支持三种长度的密钥:128位,192位,256位。

aes算法是把明文拆分成一个个独立的明文块,每一个明文块长128bit。这些明文块经过aes加密器的复杂处理,生成一个个独立的密文块,这些密文块拼接在一起,就是最终的aes加密结果。

但是这里涉及到一个问题:假如一段明文长度是192bit,如果按每128bit一个明文块来拆分的话,第二个明文块只有64bit,不足128bit。这时候怎么办呢?就需要对明文块进行填充(Padding):

aes的工作模式,体现在把明文块加密成密文块的处理过程中。

加密和解密用的密钥是不同的,这种加密方式是用数学上的难解问题构造的,通常加密解密的速度比较慢,适合偶尔发送数据的场合。优点是密钥传输方便。

1.SHA

安全散列算法(英语:Secure Hash Algorithm,缩写为SHA)是一个密码散列函数家族,是FIPS所认证的安全散列算法。能计算出一个数字消息所对应到的,长度固定的字符串(又称消息摘要)的算法,且若输入的消息不同,它们对应到不同字符串的机率很高。

SHA分为SHA-1、SHA-224、SHA-256、SHA-384,和SHA-512五种算法,后四者有时并称为SHA-2。SHA-1在许多安全协定中广为使用,包括TLS和SSL、PGP、SSH、S/MIME和IPsec,曾被视为是MD5(更早之前被广为使用的杂凑函数)的后继者。但SHA-1的安全性如今被密码学家严重质疑;虽然至今尚未出现对SHA-2有效的攻击,它的算法跟SHA-1基本上仍然相似;因此有些人开始发展其他替代的杂凑算法。

2.RSA

RSA算法1978年出现,是第一个既能用于数据加密也能用于数字签名的算法,易于理解和操作。

RSA基于一个数论事实:将两个大素数相乘十分容易,但想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥,即公钥,而两个大素数组合成私钥。公钥是可提供给任何人使用,私钥则为自己所有,供解密之用。

3.MD5

MD5信息摘要算法 (英语:MD5 Message-Digest Algorithm),一种被广泛使用的密码散列函数,可以产生出一个128位(16字节)的散列值,用于确保信息传输完整一致。具有如下优点:

XOR:异或加密,既将某个字符或者数值 x 与一个数值 m 进行异或运算得到 y ,则再用 y 与 m 进行异或运算就可还原为 x。

使用场景:

(1)两个变量的互换(不借助第三个变量);

(2)数据的简单加密解密。

对于加密的总结(aes,RSA)

跟第三方联调的时候会碰到各种加密算法,所以总结一下。

aes不是将拿到的明文一次性加密,而是分组加密,就是先将明文切分成长度相等的块,每块大小128bit,再对每一小块进行加密。那么问题就来了,并不是所有的原始明文串能被等分成128bit,例如原串大小200bit,那么第二个块只有72bit,所以就需要对第二个块进行填充处理,让第二个块的大小达到128bit。常见的填充模式有

不进行填充,要求原始加密串大小必须是128bit的整数倍;

假设块大小8字节,如果这个块跟8字节还差n个字节,那么就在原始块填充n,直到满8字节。例:块{1,2,3},跟8字节差了5个字节,那么补全后的结果{1,2,3,5,5,5,5,5}后面是五个5,块{1,2,3,..7}跟8字节差了1个字节,那么补全后就是{1,2,3,...,7,1},就是补了一个1。

如果恰好8字节又选择了PKCS5Padding填充方式呢?块{1,2,3...8}填充后变成{1,2,3...8,8...8},原串后面被补了8个8,这样做的原因是方便解密,只需要看最后一位就能算出原块的大小是多少。

跟PKCS5Padding的填充方式一样,不同的是,PKCS5Padding只是对8字节的进行填充,PKCS7Padding可以对1~256字节大小的block进行填充。openssl里aes的默认填充方式就是PKCS7Padding

aes有多种加密模式,包括:ECB,CBC,CTR,OCF,CFB,最常见的还是ECB和CBC模式。

最简单的一种加密模式,每个块进行独立加密,块与块之间加密互不影响,这样就能并行,效率高。

虽然这样加密很简单,但是不安全,如果两个块的明文一模一样,那么加密出来的东西也一模一样。

openssl的相关函数:

CBC模式中引入了一个新的概念,初始向量iv。iv的作用就是为了防止同样的明文块被加密成同样的内容。原理是第一个明文块跟初始向量做异或后加密,第二个块跟第一个密文块做异或再加密,依次类推,避免了同样的块被加密成同样的内容。

openssl相关函数:

敲黑板!! 所以跟第三方对接的时候,如果对面说他们用aes加密,务必对他们发起灵魂三问:

签名的作用是让接受方验证你传过去的数据没有被篡改;加密的作用是保证数据不被窃取。

原理:你有一个需要被验签的原串A。

步骤一:选择hash算法将A进行hash得到hash_a;

步骤二:将hash_a进行加密,得到加密值encrypt_a;

步骤三:将原串A和加密的encrypt_a发给第三方,第三方进行验签。第三方先解密encrypt_a,得到一个hash值hash_a1,然后对原串A使用同样的hash算法进行hash,得到的即为加密前的hash_a,如果hash_a = hash_a1, 那么验签成功。

rsa使用私钥对信息加密来做签名,使用公钥解密去验签。

openssl相关函数:

注意:两个函数中的m,是原串hash后的值,type表示生成m的算法,例如NID_sha256表示使用sha256对原串进行的hash,返回1为签名成功或者验签成功,-1位为失败。

再次敲黑板!! 所以如果第三方说使用rsa验签,要让对方告知他们的hash算法。

首先明确,私钥加密不等于签名。加密的时候,使用使用公钥加密,第三方使用你的私钥进行解密。

openssl里公钥加密函数为RSA_public_encrypt,私钥解密函数为RSA_private_decrypt,具体的可以自己去查看下官方文档。

rsa也涉及到了填充方式,所以对接的时候也要问清楚

在使用公钥进行加密时,会发现每次加密出的结果都不一样,但使用私钥加密时,每次的结果都一样,网上查了一圈,说是因为填充方式的原因。

官方文档说明:

那么为什么一定要使用私钥做签名,公钥做加密,而不是公钥做签名,私钥做加密呢?

举个栗子:

加密技术06-加密总结

对称密码是一种用相同的密钥进行加密和解密的技术,用于确保消息的机密性。在对称密码的算法方面,目前主要使用的是 aes。尽管对称密码能够确保消息的机密性,但需要解决将解密密钥配送给接受者的密钥配送问题。

主要算法

DES

数据加密标准(英语:Data Encryption Standard,缩写为 DES)是一种对称密钥加密块密码算法,1976年被美国联邦政府的国家标准局确定为联邦资料处理标准(FIPS),随后在国际上广泛流传开来。它基于使用56位密钥的对称算法。

DES现在已经不是一种安全的加密方法,主要因为它使用的56位密钥过短。

原理请参考: 加密技术01-对称加密-DES原理

3DES

三重数据加密算法(英语:Triple Data Encryption Algorithm,缩写为TDEA,Triple DEA),或称3DES(Triple DES),是一种对称密钥加密块密码,相当于是对每个数据块应用三次DES算法。由于计算机运算能力的增强,原版DES由于密钥长度过低容易被暴力破解;3DES即是设计用来提供一种相对简单的方法,即通过增加DES的密钥长度来避免类似的攻击,而不是设计一种全新的块密码算法。

注意:有3个独立密钥的3DES的密钥安全性为168位,但由于中途相遇攻击(知道明文和密文),它的有效安全性仅为112位。

3DES使用“密钥包”,其包含3个DES密钥,K1,K2和K3,均为56位(除去奇偶校验位)。

密文 = E k3 (D k2 (E k1 (明文)))

而解密则为其反过程:

明文 = D k3 (E k2 (D k1 (密文)))

aes

aes 全称 Advanced Encryption Standard(高级加密标准)。它的出现主要是为了取代 DES 加密算法的,因为 DES 算法的密钥长度是 56 位,因此算法的理论安全强度是 56 位。于是 1997 年 1 月 2 号,美国国家标准技术研究所宣布希望征集高级加密标准,用以取代 DES。aes 也得到了全世界很多密码工作者的响应,先后有很多人提交了自己设计的算法。最终有5个候选算法进入最后一轮:Rijndael,Serpent,Twofish,RC6 和 MARS。最终经过安全性分析、软硬件性能评估等严格的步骤,Rijndael 算法获胜。

aes 密码与分组密码 Rijndael 基本上完全一致,Rijndael 分组大小和密钥大小都可以为 128 位、192 位和 256 位。然而 aes 只要求分组大小为 128 位,因此只有分组长度为 128 位的 Rijndael 才称为 aes 算法。

本文 aes 默认是分组长度为 128 位的 Rijndael 算法

原理请参考: 加密技术02-对称加密-aes原理

算法对比

公钥密码是一种用不同的密钥进行加密和解密的技术,和对称密码一样用于确保消息的机密性。使用最广泛的一种公钥密码算法是 RAS。和对称密码相比,公钥密码的速度非常慢,因此一般都会和对称密码一起组成混合密码系统来使用。公钥密码能够解决对称密码中的密钥交换问题,但存在通过中间人攻击被伪装的风险,因此需要对带有数字签名的公钥进行认证。

公钥密码学的概念是为了解决对称密码学中最困难的两个问题而提出

应用场景

几个误解

主要算法

Diffie–Hellman 密钥交换

迪菲-赫尔曼密钥交换(英语:Diffie–Hellman key exchange,缩写为D-H) 是一种安全协议。它可以让双方在完全没有对方任何预先信息的条件下通过不安全信道创建起一个密钥。这个密钥可以在后续的通讯中作为对称密钥来加密通讯内容。公钥交换的概念最早由瑞夫·墨克(Ralph C. Merkle)提出,而这个密钥交换方法,由惠特菲尔德·迪菲(Bailey Whitfield Diffie)和马丁·赫尔曼(Martin Edward Hellman)在1976年发表,也是在公开文献中发布的第一个非对称方案。

Diffie–Hellman 算法的有效性是建立在计算离散对数很困难的基础上。简单地说,我们可如下定义离散对数。首先定义素数 p 的本原跟。素数 p 的本原根是一个整数,且其幂可以产生 1 到 p-1 之间所有整数,也就是说若 a 是素数 p 的本原根,则

a mod p, a 2 mod p,..., a p-1 mod p 各不相同,它是整数 1 到 p-1 的一个置换。

对任意整数 b 和素数 p 的本原跟 a,我们可以找到唯一的指数 i 使得

b ≡ a i (mod p) 其中 0 = i = p-1

其中 a, b, p 这些是公开的,i 是私有的,破解难度就是计算 i 的难度。

Elgamal

1985年,T.Elgamal 提出了一种基于离散对数的公开密钥体制,一种与 Diffie-Hellman 密钥分配体制密切相关。Elgamal 密码体系应用于一些技术标准中,如数字签名标准(DSS) 和 S/MIME 电子邮件标准。

基本原理就是利用 Diffie–Hellman 进行密钥交换,假设交换的密钥为 K,然后用 K 对要发送的消息 M,进行加密处理。

所以 Elgamal 的安全系数取决于 Diffie–Hellman 密钥交换。

另外 Elgamal 加密后消息发送的长度会增加一倍。

RSA

MIT 的罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)在 1977 年提出并于 1978 年首次发表的算法。RSA 是最早满足要求的公钥算法之一,自诞生日起就成为被广泛接受且被实现的通用的公钥加密方法。

RSA 算法的有效性主要依据是大数因式分解是很困难的。

原理请参考: 加密技术03-非对称加密-RSA原理

ECC

大多数使用公钥密码学进行加密和数字签名的产品和标准都使用 RSA 算法。我们知道,为了保证 RSA 使用的安全性,最近这些年来密钥的位数一直在增加,这对使用 RSA 的应用是很重的负担,对进行大量安全交易的电子商务更是如此。近来,出现的一种具有强大竞争力的椭圆曲线密码学(ECC)对 RSA 提出了挑战。在标准化过程中,如关于公钥密码学的 IEEE P1363 标准中,人们也已考虑了 ECC。

与 RSA 相比,ECC 的主要诱人之处在于,它可以使用比 RSA 短得多的密钥得到相同安全性,因此可以减少处理负荷。

ECC 比 RSA 或 Diffie-Hellman 原理复杂很多,本文就不多阐述了。

算法对比

公钥密码体制的应用

密码分析所需计算量( NIST SP-800-57 )

注:L=公钥的大小,N=私钥的大小

散列函数是一种将长消息转换为短散列值的技术,用于确保消息的完整性。在散列算法方面,SHA-1 曾被广泛使用,但由于人们已经发现了一些针对该算法理论上可行的攻击方式,因此该算法不应再被用于新的用途。今后我们应该主要使用的算法包括目前已经在广泛使用的 SHA-2,以及具有全新结构的 SHA-3 算法。散列函数可以单独使用,也可以作为消息认证、数字签名以及伪随机数生成器等技术的组成元素来使用。

主要应用

主要算法

MD5

MD5消息摘要算法(英语:MD5 Message-Digest Algorithm),一种被广泛使用的密码散列函数,可以产生出一个 128 位( 16 字节,被表示为 32 位十六进制数字)的散列值(hash value),用于确保信息传输完整一致。MD5 由美国密码学家罗纳德·李维斯特(Ronald Linn Rivest)设计,于 1992 年公开,用以取代 MD4 算法。这套算法的程序在 RFC 1321 中被加以规范。

2009年,中国科学院的谢涛和冯登国仅用了 2 20.96 的碰撞算法复杂度,破解了MD5的碰撞抵抗,该攻击在普通计算机上运行只需要数秒钟。2011年,RFC 6151 禁止MD5用作密钥散列消息认证码。

原理请参考: 加密技术04-哈希算法-MD5原理

SHA-1

SHA-1(英语:Secure Hash Algorithm 1,中文名:安全散列算法1)是一种密码散列函数,美国国家安全局设计,并由美国国家标准技术研究所(NIST)发布为联邦资料处理标准(FIPS)。SHA-1可以生成一个被称为消息摘要的160位(20字节)散列值,散列值通常的呈现形式为40个十六进制数。

2005年,密码分析人员发现了对SHA-1的有效攻击方法,这表明该算法可能不够安全,不能继续使用,自2010年以来,许多组织建议用SHA-2或SHA-3来替换SHA-1。Microsoft、Google以及Mozilla都宣布,它们旗下的浏览器将在2017年停止接受使用SHA-1算法签名的SSL证书。

2017年2月23日,CWI Amsterdam与Google宣布了一个成功的SHA-1碰撞攻击,发布了两份内容不同但SHA-1散列值相同的PDF文件作为概念证明。

2020年,针对SHA-1的选择前缀冲突攻击已经实际可行。建议尽可能用SHA-2或SHA-3取代SHA-1。

原理请参考: 加密技术05-哈希算法-SHA系列原理

SHA-2

SHA-2,名称来自于安全散列算法2(英语:Secure Hash Algorithm 2)的缩写,一种密码散列函数算法标准,由美国国家安全局研发,由美国国家标准与技术研究院(NIST)在2001年发布。属于SHA算法之一,是SHA-1的后继者。其下又可再分为六个不同的算法标准,包括了:SHA-224、SHA-256、SHA-384、SHA-512、SHA-512/224、SHA-512/256。

SHA-2 系列的算法主要思路和 SHA-1 基本一致

原理请参考: 加密技术05-哈希算法-SHA系列原理

SHA-3

SHA-3 第三代安全散列算法(Secure Hash Algorithm 3),之前名为 Keccak 算法。

Keccak 是一个加密散列算法,由 Guido Bertoni,Joan Daemen,Michaël Peeters,以及 Gilles Van Assche 在 RadioGatún 上设计。

2012年10月2日,Keccak 被选为 NIST 散列函数竞赛的胜利者。SHA-2 目前没有出现明显的弱点。由于对 MD5、SHA-0 和 SHA-1 出现成功的破解,NIST 感觉需要一个与之前算法不同的,可替换的加密散列算法,也就是现在的 SHA-3。

SHA-3 在2015年8月5日由 NIST 通过 FIPS 202 正式发表。

原理请参考: 加密技术05-哈希算法-SHA系列原理

算法对比

对称加密、非对称加密、RSA(总结)

指的就是加、解密使用的同是一串密钥,所以被称做对称加密。对称加密只有一个密钥作为私钥。 常见的对称加密算法:DES,aes等。

指的是加、解密使用不同的密钥,一把作为公开的公钥,另一把作为私钥。公钥加密的信息,只有私钥才能解密。反之,私钥加密的信息,只有公钥才能解密。 举个例子,你向某公司服务器请求公钥,服务器将公钥发给你,你使用公钥对消息加密,那么只有私钥的持有人才能对你的消息解密。与对称加密不同的是,公司服务器不需要将私钥通过网络发送出去,因此安全性大大提高。最常用的非对称加密算法:

对称加密相比非对称加密算法来说,加解密的效率要高得多、加密速度快。但是缺陷在于对于密钥的管理和分发上比较困难,不是非常安全,密钥管理负担很重。

安全性更高,公钥是公开的,密钥是自己保存的,不需要将私钥给别人。缺点:加密和解密花费时间长、速度慢,只适合对少量数据进行加密。

安全肯定是非对称加密安全,但是效率比较慢,对称加密效率高,但是不安全。严谨一点的做法是混合起来使用,将对称加密的密钥使用非对称加密的公钥进行加密,然后发送出去,接收方使用私钥进行解密得到对称加密的密钥,然后双方可以使用对称加密来进行沟通。实际工作中直接使用非对称加、解密其实也可以,因为我们平时一般请求的报文不会很大,加解密起来速度在可接受范围内,或者可以对敏感字段,比如密码、手机号、身份证号等进行分段加密,效率还可以。

随着社会的发展,产品的更新速度也是越来越快,算法是方案的核心,保护开发者和消费者的权益刻不容缓,那么加密芯片在其中就扮演了重要的角色,如何选择加密芯片呢?
1.市面上加密芯片种类繁多,算法多种,加密芯片强度参差不齐,加密性能与算法、秘钥密切相关。常见的加密算法有对称算法,非对称算法,国密算法,大部分都是基于I2C、SPI或1-wire协议进行通信。加密芯片还是需要项目实际需求选择,比如对称加密算法的特点是计算量小、加密速度快、加密效率高等。
2.因为单片机软加密性能较弱且非常容易被复制,所以有了加密芯片的产生,大大增加了破解难度和生产成本。目前加密芯片广泛应用于车载电子、消费电子、美容医疗、工业控制、AI智能等行业。
3.韩国KEROS加密芯片专注加密领域十多年,高安全性、低成本,在加密保护领域受到了众多客户的高度赞扬及认可。KEROS采用先进的内置aes256安全引擎和加密功能,通过真动态数据交互并为系统中敏感信息的存储提供了安全的场所,有了它的保护电路,即使受到攻击,这些信息也可以保持安全。其封装SOP8,SOT23-6,TDFN-6集成I2C与1-wire协议满足不同应用需求。CK02AT、CK22AT、CK02AP、CK22AP支持1.8V-3.6V,256bit位秘钥长度,5bytes SN序列号,支持定制化免烧录,加密行业首选。关于加密算法总结报告的介绍到此就结束了,感谢大家耐心阅读。

本文标签:加密算法总结报告

产品列表
产品封装
友情链接