173 2438 5004
KEROS加密芯片——品牌直销 | 免费样品 | 技术支持
当前位置:网站首页 > 资讯中心 正文 资讯中心

aes数据加密标准的加密过程

keros@mark 2022-10-29 资讯中心

本篇文章给大家谈谈aes数据加密标准的加密过程以及对应的知识点,希望对各位有所帮助。

本文目录一览

加密技术02-对称加密-aes原理

aes 全称 Advanced Encryption Standard(高级加密标准)。它的出现主要是为了取代 DES 加密算法的,因为 DES 算法的密钥长度是 56 位,因此算法的理论安全强度是 2^56。但二十世纪中后期正是计算机飞速发展的阶段,元器件制造工艺的进步使得计算机的处理能力越来越强,所以还是不能满足人们对安全性的要求。于是 1997 年 1 月 2 号,美国国家标准技术研究所宣布希望征集高级加密标准,用以取代 DES。aes 也得到了全世界很多密码工作者的响应,先后有很多人提交了自己设计的算法。最终有5个候选算法进入最后一轮:Rijndael,Serpent,Twofish,RC6 和 MARS。最终经过安全性分析、软硬件性能评估等严格的步骤,Rijndael 算法获胜。

aes 密码与分组密码 Rijndael 基本上完全一致,Rijndael 分组大小和密钥大小都可以为 128 位、192 位和 256 位。然而 aes 只要求分组大小为 128 位,因此只有分组长度为 128 位的 Rijndael 才称为 aes 算法。本文只对分组大小 128 位,密钥长度也为 128 位的 Rijndael 算法进行分析。密钥长度为 192 位和 256 位的处理方式和 128 位的处理方式类似,只不过密钥长度每增加 64 位,算法的循环次数就增加 2 轮,128 位循环 10 轮、192 位循环 12 轮、256 位循环 14 轮。

给定一个 128 位的明文和一个 128 位的密钥,输出一个 128 位的密文。这个密文可以用相同的密钥解密。虽然 aes 一次只能加密 16 个字节,但我们只需要把明文划分成每 16 个字节一组的块,就可以实现任意长度明文的加密。如果明文长度不是 16 个字节的倍数,则需要填充,目前填充方式主要是 PKCS7 / PKCS5。

下来主要分析 16 个字节的加解密过程,下图是 aes 算法框架。

密钥生成流程

G 函数

关于轮常量的生成下文会介绍。

主要作用:一是增加密钥编排中的非线性;二是消除aes中的对称性。这两种属性都是抵抗某些分组密码攻击必要的。

接下来详细解释一下几个关键步骤。

明文矩阵和当前回次的子密钥矩阵进行异或运算。

字节代换层的主要功能是通过 S 盒完成一个字节到另外一个字节的映射。

依次遍历 4 * 4 的明文矩阵 P 中元素,元素高四位值为行号,低四位值为列号,然后在 S 盒中取出对应的值。

行位移操作最为简单,它是用来将输入数据作为一个 4 * 4 的字节矩阵进行处理的,然后将这个矩阵的字节进行位置上的置换。ShiftRows 子层属于 aes 手动的扩散层,目的是将单个位上的变换扩散到影响整个状态当,从而达到雪崩效应。它之所以称作行位移,是因为它只在 4 * 4 矩阵的行间进行操作,每行 4 字节的数据。在加密时,保持矩阵的第一行不变,第二行向左移动 1 个字节、第三行向左移动 2 个字节、第四行向左移动 3 个字节。

列混淆层是 aes 算法中最为复杂的部分,属于扩散层,列混淆操作是 aes 算法中主要的扩散元素,它混淆了输入矩阵的每一列,使输入的每个字节都会影响到 4 个输出字节。行位移层和列混淆层的组合使得经过三轮处理以后,矩阵的每个字节都依赖于 16 个明文字节成可能。其实质是在有限域 GF(2^8) 上的多项式乘法运算,也称伽罗瓦域上的乘法。

伽罗瓦域

伽罗瓦域上的乘法在包括加/解密编码和存储编码中经常使用,aes 算法就使用了伽罗瓦域 GF(2^8) 中的运算。以 2^n 形式的伽罗瓦域来说,加减法都是异或运算,乘法相对较复杂一些,下面介绍 GF(2^n) 上有限域的乘法运算。

本原多项式: 域中不可约多项式,是不能够进行因子分解的多项式,本原多项式是一种特殊的不可约多项式。当一个域上的本原多项式确定了,这个域上的运算也就确定了,本原多项式一般通过查表可得,同一个域往往有多个本原多项式。通过将域中的元素化为多项式的形式,可以将域上的乘法运算转化为普通的多项式乘法模以本原多项式的计算。比如 g(x) = x^3+x+1 是 GF(2^3) 上的本原多项式,那么 GF(2^3) 域上的元素 3*7 可以转化为多项式乘法:

乘二运算: 无论是普通计算还是伽罗瓦域上运算,乘二计算是一种非常特殊的运算。普通计算在计算机上通过向高位的移位计算即可实现,伽罗瓦域上乘二也不复杂,一次移位和一次异或即可。从多项式的角度来看,伽罗瓦域上乘二对应的是一个多项式乘以 x,如果这个多项式最高指数没有超过本原多项式最高指数,那么相当于一次普通计算的乘二计算,如果结果最高指数等于本原多项式最高指数,那么需要将除去本原多项式最高项的其他项和结果进行异或。

比如:GF(2^8)(g(x) = x^8 + x^4 + x^3 + x^2 + 1)上 15*15 = 85 计算过程。

15 写成生成元指数和异或的形式 2^3 + 2^2 + 2^1 + 1,那么:

乘二运算计算过程:

列混淆 :就是把两个矩阵的相乘,里面的运算,加法对应异或运算,乘法对应伽罗瓦域 GF(2^8) 上的乘法(本原多项式为:x^8 + x^4 + x^3 + x^1 + 1)。

Galois 函数为伽罗瓦域上的乘法。

解码过程和 DES 解码类似,也是一个逆过程。基本的数学原理也是:一个数进行两次异或运算就能恢复,S ^ e ^ e = S。

密钥加法层

通过异或的特性,再次异或就能恢复原数。

逆Shift Rows层

恢复 Shift Rows层 的移动。

逆Mix Column层

通过乘上正矩阵的逆矩阵进行矩阵恢复。

一个矩阵先乘上一个正矩阵,然后再乘上他的逆矩阵,相当于没有操作。

逆字节代换层

通过再次代换恢复字节代换层的代换操作。

比如:0x00 字节的置换过程

轮常量生成规则如下:

算法原理和 aes128 一样,只是每次加解密的数据和密钥大小为 192 位和 256 位。加解密过程几乎是一样的,只是循环轮数增加,所以子密钥个数也要增加,最后轮常量 RC 长度增加。

aes加密安全吗

至少在现在是安全的

首先我们来看一下aes加密过程

随机生成一份密钥,分为公钥和私钥,公钥发送到公共网络或者被加密文件的计算机,把私钥钥记为A,公钥记为B,公钥存储在系统目录下,隐藏这个公钥,因为系统目录文件比较多,手动寻找密钥不太现实,就算找到了目录,因为隐藏了文件,你也找不到,再或者你真的找到了公钥也没用,因为公钥需要和私钥配合使用才能解密文件,你不可能通过公钥推算出密码,除非加密着把私钥发送给你,你也只剩下一种选择,暴力破解文件密码,目前aes128加密算法的,一台普通的计算机需要暴力破解十万年,还不包括可能出现了意外,以及加密者是否不使用aes128而是采用aes256or512,综上所述,Aes加密算法非常安全,但Aes加密算法可以被量子计算机破解,所以可能之后就要换成bb84了

aes加密的详细过程是怎么样的?

详细过程如下图:

aes加密标准又称为高级加密标准Rijndael加密法,是美国国家标准技术研究所NIST旨在取代DES的21世纪的加密标准。aes的基本要求是,采用对称分组密码体制,密钥长度可以为128、192或256位,分组长度128位,算法应易在各种硬件和软件上实现。

1998年NIST开始aes第一轮分析、测试和征集,共产生了15个候选算法。

1999年3月完成了第二轮aes2的分析、测试。2000年10月2日美国政府正式宣布选中比利时密码学家Joan Daemen和Vincent Rijmen提出的一种密码算法Rijndael作为aes的加密算法。

aes加密数据块和密钥长度可以是128b、192b、256b中的任意一个。aes加密有很多轮的重复和变换。

加密技术06-加密总结

对称密码是一种用相同的密钥进行加密和解密的技术,用于确保消息的机密性。在对称密码的算法方面,目前主要使用的是 aes。尽管对称密码能够确保消息的机密性,但需要解决将解密密钥配送给接受者的密钥配送问题。

主要算法

DES

数据加密标准(英语:Data Encryption Standard,缩写为 DES)是一种对称密钥加密块密码算法,1976年被美国联邦政府的国家标准局确定为联邦资料处理标准(FIPS),随后在国际上广泛流传开来。它基于使用56位密钥的对称算法。

DES现在已经不是一种安全的加密方法,主要因为它使用的56位密钥过短。

原理请参考: 加密技术01-对称加密-DES原理

3DES

三重数据加密算法(英语:Triple Data Encryption Algorithm,缩写为TDEA,Triple DEA),或称3DES(Triple DES),是一种对称密钥加密块密码,相当于是对每个数据块应用三次DES算法。由于计算机运算能力的增强,原版DES由于密钥长度过低容易被暴力破解;3DES即是设计用来提供一种相对简单的方法,即通过增加DES的密钥长度来避免类似的攻击,而不是设计一种全新的块密码算法。

注意:有3个独立密钥的3DES的密钥安全性为168位,但由于中途相遇攻击(知道明文和密文),它的有效安全性仅为112位。

3DES使用“密钥包”,其包含3个DES密钥,K1,K2和K3,均为56位(除去奇偶校验位)。

密文 = E k3 (D k2 (E k1 (明文)))

而解密则为其反过程:

明文 = D k3 (E k2 (D k1 (密文)))

aes

aes 全称 Advanced Encryption Standard(高级加密标准)。它的出现主要是为了取代 DES 加密算法的,因为 DES 算法的密钥长度是 56 位,因此算法的理论安全强度是 56 位。于是 1997 年 1 月 2 号,美国国家标准技术研究所宣布希望征集高级加密标准,用以取代 DES。aes 也得到了全世界很多密码工作者的响应,先后有很多人提交了自己设计的算法。最终有5个候选算法进入最后一轮:Rijndael,Serpent,Twofish,RC6 和 MARS。最终经过安全性分析、软硬件性能评估等严格的步骤,Rijndael 算法获胜。

aes 密码与分组密码 Rijndael 基本上完全一致,Rijndael 分组大小和密钥大小都可以为 128 位、192 位和 256 位。然而 aes 只要求分组大小为 128 位,因此只有分组长度为 128 位的 Rijndael 才称为 aes 算法。

本文 aes 默认是分组长度为 128 位的 Rijndael 算法

原理请参考: 加密技术02-对称加密-aes原理

算法对比

公钥密码是一种用不同的密钥进行加密和解密的技术,和对称密码一样用于确保消息的机密性。使用最广泛的一种公钥密码算法是 RAS。和对称密码相比,公钥密码的速度非常慢,因此一般都会和对称密码一起组成混合密码系统来使用。公钥密码能够解决对称密码中的密钥交换问题,但存在通过中间人攻击被伪装的风险,因此需要对带有数字签名的公钥进行认证。

公钥密码学的概念是为了解决对称密码学中最困难的两个问题而提出

应用场景

几个误解

主要算法

Diffie–Hellman 密钥交换

迪菲-赫尔曼密钥交换(英语:Diffie–Hellman key exchange,缩写为D-H) 是一种安全协议。它可以让双方在完全没有对方任何预先信息的条件下通过不安全信道创建起一个密钥。这个密钥可以在后续的通讯中作为对称密钥来加密通讯内容。公钥交换的概念最早由瑞夫·墨克(Ralph C. Merkle)提出,而这个密钥交换方法,由惠特菲尔德·迪菲(Bailey Whitfield Diffie)和马丁·赫尔曼(Martin Edward Hellman)在1976年发表,也是在公开文献中发布的第一个非对称方案。

Diffie–Hellman 算法的有效性是建立在计算离散对数很困难的基础上。简单地说,我们可如下定义离散对数。首先定义素数 p 的本原跟。素数 p 的本原根是一个整数,且其幂可以产生 1 到 p-1 之间所有整数,也就是说若 a 是素数 p 的本原根,则

a mod p, a 2 mod p,..., a p-1 mod p 各不相同,它是整数 1 到 p-1 的一个置换。

对任意整数 b 和素数 p 的本原跟 a,我们可以找到唯一的指数 i 使得

b ≡ a i (mod p) 其中 0 = i = p-1

其中 a, b, p 这些是公开的,i 是私有的,破解难度就是计算 i 的难度。

Elgamal

1985年,T.Elgamal 提出了一种基于离散对数的公开密钥体制,一种与 Diffie-Hellman 密钥分配体制密切相关。Elgamal 密码体系应用于一些技术标准中,如数字签名标准(DSS) 和 S/MIME 电子邮件标准。

基本原理就是利用 Diffie–Hellman 进行密钥交换,假设交换的密钥为 K,然后用 K 对要发送的消息 M,进行加密处理。

所以 Elgamal 的安全系数取决于 Diffie–Hellman 密钥交换。

另外 Elgamal 加密后消息发送的长度会增加一倍。

RSA

MIT 的罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)在 1977 年提出并于 1978 年首次发表的算法。RSA 是最早满足要求的公钥算法之一,自诞生日起就成为被广泛接受且被实现的通用的公钥加密方法。

RSA 算法的有效性主要依据是大数因式分解是很困难的。

原理请参考: 加密技术03-非对称加密-RSA原理

ECC

大多数使用公钥密码学进行加密和数字签名的产品和标准都使用 RSA 算法。我们知道,为了保证 RSA 使用的安全性,最近这些年来密钥的位数一直在增加,这对使用 RSA 的应用是很重的负担,对进行大量安全交易的电子商务更是如此。近来,出现的一种具有强大竞争力的椭圆曲线密码学(ECC)对 RSA 提出了挑战。在标准化过程中,如关于公钥密码学的 IEEE P1363 标准中,人们也已考虑了 ECC。

与 RSA 相比,ECC 的主要诱人之处在于,它可以使用比 RSA 短得多的密钥得到相同安全性,因此可以减少处理负荷。

ECC 比 RSA 或 Diffie-Hellman 原理复杂很多,本文就不多阐述了。

算法对比

公钥密码体制的应用

密码分析所需计算量( NIST SP-800-57 )

注:L=公钥的大小,N=私钥的大小

散列函数是一种将长消息转换为短散列值的技术,用于确保消息的完整性。在散列算法方面,SHA-1 曾被广泛使用,但由于人们已经发现了一些针对该算法理论上可行的攻击方式,因此该算法不应再被用于新的用途。今后我们应该主要使用的算法包括目前已经在广泛使用的 SHA-2,以及具有全新结构的 SHA-3 算法。散列函数可以单独使用,也可以作为消息认证、数字签名以及伪随机数生成器等技术的组成元素来使用。

主要应用

主要算法

MD5

MD5消息摘要算法(英语:MD5 Message-Digest Algorithm),一种被广泛使用的密码散列函数,可以产生出一个 128 位( 16 字节,被表示为 32 位十六进制数字)的散列值(hash value),用于确保信息传输完整一致。MD5 由美国密码学家罗纳德·李维斯特(Ronald Linn Rivest)设计,于 1992 年公开,用以取代 MD4 算法。这套算法的程序在 RFC 1321 中被加以规范。

2009年,中国科学院的谢涛和冯登国仅用了 2 20.96 的碰撞算法复杂度,破解了MD5的碰撞抵抗,该攻击在普通计算机上运行只需要数秒钟。2011年,RFC 6151 禁止MD5用作密钥散列消息认证码。

原理请参考: 加密技术04-哈希算法-MD5原理

SHA-1

SHA-1(英语:Secure Hash Algorithm 1,中文名:安全散列算法1)是一种密码散列函数,美国国家安全局设计,并由美国国家标准技术研究所(NIST)发布为联邦资料处理标准(FIPS)。SHA-1可以生成一个被称为消息摘要的160位(20字节)散列值,散列值通常的呈现形式为40个十六进制数。

2005年,密码分析人员发现了对SHA-1的有效攻击方法,这表明该算法可能不够安全,不能继续使用,自2010年以来,许多组织建议用SHA-2或SHA-3来替换SHA-1。Microsoft、Google以及Mozilla都宣布,它们旗下的浏览器将在2017年停止接受使用SHA-1算法签名的SSL证书。

2017年2月23日,CWI Amsterdam与Google宣布了一个成功的SHA-1碰撞攻击,发布了两份内容不同但SHA-1散列值相同的PDF文件作为概念证明。

2020年,针对SHA-1的选择前缀冲突攻击已经实际可行。建议尽可能用SHA-2或SHA-3取代SHA-1。

原理请参考: 加密技术05-哈希算法-SHA系列原理

SHA-2

SHA-2,名称来自于安全散列算法2(英语:Secure Hash Algorithm 2)的缩写,一种密码散列函数算法标准,由美国国家安全局研发,由美国国家标准与技术研究院(NIST)在2001年发布。属于SHA算法之一,是SHA-1的后继者。其下又可再分为六个不同的算法标准,包括了:SHA-224、SHA-256、SHA-384、SHA-512、SHA-512/224、SHA-512/256。

SHA-2 系列的算法主要思路和 SHA-1 基本一致

原理请参考: 加密技术05-哈希算法-SHA系列原理

SHA-3

SHA-3 第三代安全散列算法(Secure Hash Algorithm 3),之前名为 Keccak 算法。

Keccak 是一个加密散列算法,由 Guido Bertoni,Joan Daemen,Michaël Peeters,以及 Gilles Van Assche 在 RadioGatún 上设计。

2012年10月2日,Keccak 被选为 NIST 散列函数竞赛的胜利者。SHA-2 目前没有出现明显的弱点。由于对 MD5、SHA-0 和 SHA-1 出现成功的破解,NIST 感觉需要一个与之前算法不同的,可替换的加密散列算法,也就是现在的 SHA-3。

SHA-3 在2015年8月5日由 NIST 通过 FIPS 202 正式发表。

原理请参考: 加密技术05-哈希算法-SHA系列原理

算法对比

产品的开发快则一个月,慢则一年,那么如何杜绝市面上各种山寨也成为了我们必须要关注的问题,加密芯片可以做到这点,在保障开发者权益的同时也保护了消费者权益,KEROS加密芯片作为该领域的领头者,一直在尽力贡献一份力。特点如下:接口:标准I2C协议接口;算法: 标准aes256 / KAS算法;特殊接口:Random Stream Cipher for Interface;工作温度:工业级 -40℃ ~+85℃;频率:400Khz;存储:2K字节EEPROM(可选);电压:1.8V~3.6V;封装:SOT23-6,SOP8,TDFN-6。aes数据加密标准的加密过程的介绍就聊到这里吧,感谢你花时间阅读本站内容,谢谢。

本文标签:aes数据加密标准的加密过程

产品列表
产品封装
友情链接