173 2438 5004
KEROS加密芯片——品牌直销 | 免费样品 | 技术支持
当前位置:网站首页 > 资讯中心 正文 资讯中心

安卓aes加密字符串

keros@mark 2022-10-31 资讯中心

本篇文章给大家谈谈安卓aes加密字符串以及对应的知识点,希望对各位有所帮助。

本文目录一览

安卓常见的一些加密((对称加密DES,aes),非对称加密(RSA),MD5)

DES是一种对称加密算法,所谓对称加密算法即:加密和解密使用相同密钥的算法。DES加密算法出自IBM的研究,

后来被美国政府正式采用,之后开始广泛流传,但是近些年使用越来越少,因为DES使用56位密钥,以现代计算能力,

24小时内即可被破解

调用过程

最近做微信小程序获取用户绑定的手机号信息解密,试了很多方法。最终虽然没有完全解决,但是也达到我的极限了。有时会报错:javax.crypto.BadPaddingException: pad block corrupted。

出现错误的详细描述

每次刚进入小程序登陆获取手机号时,会出现第一次解密失败,再试一次就成功的问题。如果连续登出,登入,就不会再出现揭秘失败的问题。但是如果停止操作过一会,登出后登入,又会出现第一次揭秘失败,再试一次就成功的问题。

网上说的,官方文档上注意点我都排除了。获取的加密密文是在前端调取wx.login()方法后,调用我后端的微信授权接口,获取用户的sessionkey,openId.然后才是前端调用的获取sessionkey加密的用户手机号接口,所以我可以保证每次sessionkey是最新的。不会过期。

并且我通过日志发现在sessionkey不变的情况下,第一次失败,第二次解密成功。

加密算法,RSA是绕不开的话题,因为RSA算法是目前最流行的公开密钥算法,既能用于加密,也能用户数字签名。不仅在加密货币领域使用,在传统互联网领域的应用也很广泛。从被提出到现在20多年,经历了各种考验,被普遍认为是目前最优秀的公钥方案之一

非对称加密算法的特点就是加密秘钥和解密秘钥不同,秘钥分为公钥和私钥,用私钥加密的明文,只能用公钥解密;用公钥加密的明文,只能用私钥解密。

一、 什么是“素数”?

素数是这样的整数,它除了能表示为它自己和1的乘积以外,不能表示为任何其它两个整数的乘积

二、什么是“互质数”(或“互素数”)?

小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数

(1)两个质数一定是互质数。例如,2与7、13与19。

(2)一个质数如果不能整除另一个合数,这两个数为互质数。例如,3与10、5与 26。

(3)1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。

(4)相邻的两个自然数是互质数。如 15与 16。

(5)相邻的两个奇数是互质数。如 49与 51。

(6)大数是质数的两个数是互质数。如97与88。

(7)小数是质数,大数不是小数的倍数的两个数是互质数。如 7和 16。

(8)两个数都是合数(二数差又较大),小数所有的质因数,都不是大数的约数,这两个数是互质数。如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。等等。

三、什么是模指数运算?

指数运算谁都懂,不必说了,先说说模运算。模运算是整数运算,有一个整数m,以n为模做模运算,即m mod n。怎样做呢?让m去被n整除,只取所得的余数作为结果,就叫做模运算。例如,10 mod 3=1;26 mod 6=2;28 mod 2 =0等等。

模指数运算就是先做指数运算,取其结果再做模运算。如(5^3) mod 7 = (125 mod 7) = 6。

其中,符号^表示数学上的指数运算;mod表示模运算,即相除取余数。具体算法步骤如下:

(1)选择一对不同的、足够大的素数p,q。

(2)计算n=p q。

(3)计算f(n)=(p-1) (q-1),同时对p, q严加保密,不让任何人知道。

(4)找一个与f(n)互质的数e作为公钥指数,且1ef(n)。

(5)计算私钥指数d,使得d满足(d*e) mod f(n) = 1

(6)公钥KU=(e,n),私钥KR=(d,n)。

(7)加密时,先将明文变换成0至n-1的一个整数M。若明文较长,可先分割成适当的组,然后再进行交换。设密文为C,则加密过程为:C=M^e mod n。

(8)解密过程为:M=C^d mod n。

在RSA密码应用中,公钥KU是被公开的,即e和n的数值可以被第三方窃听者得到。破解RSA密码的问题就是从已知的e和n的数值(n等于pq),想法求出d的数值,这样就可以得到私钥来破解密文。从上文中的公式:(d e) mod ((p-1) (q-1)) = 1,我们可以看出,密码破解的实质问题是:从p q的数值,去求出(p-1)和(q-1)。换句话说,只要求出p和q的值,我们就能求出d的值而得到私钥。

   当p和q是一个大素数的时候,从它们的积p q去分解因子p和q,这是一个公认的数学难题。比如当p*q大到1024位时,迄今为止还没有人能够利用任何计算工具去完成分解因子的任务。因此,RSA从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。

缺点1:虽然RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何。

在android 开发的很多时候。为了保证用户的账户的安全性,再保存用户的密码时,通常会采用MD5加密算法,这种算法是不可逆的,具有一定的安全性

MD5不是加密算法, 因为如果目的是加密,必须满足的一个条件是加密过后可以解密。但是MD5是无法从结果还原出原始数据的。

MD5只是一种哈希算法

求解释这段安卓代码中的aes加密流程

aes加密过程涉及到 4 种操作,分别是字节替代、行移位、列混淆和轮密钥加。

1.字节替换:字节代替的主要功能是通过S盒完成一个字节到另外一个字节的映射。

2.行移位:行移位的功能是实现一个4x4矩阵内部字节之间的置换。

4.轮密钥加:加密过程中,每轮的输入与轮密钥异或一次(当前分组和扩展密钥的一部分进行按位异或);因为二进制数连续异或一个数结果是不变的,所以在解密时再异或上该轮的密钥即可恢复输入。

5.密钥扩展:其复杂性是确保算法安全性的重要部分。当分组长度和密钥长度都是128位时,aes的加密算法共迭代10轮,需要10个子密钥。aes的密钥扩展的目的是将输入的128位密钥扩展成11个128位的子密钥。aes的密钥扩展算法是以字为一个基本单位(一个字为4个字节),刚好是密钥矩阵的一列。因此4个字(128位)密钥需要扩展成11个子密钥,共44个字。

Android在用aes加密字符串之后再用base64加密,加密的结果跟ios端不一样,

之前在项目上用到aes256加密解密算法,刚开始在java端加密解密都没有问题,在iOS端加密解密也没有问题。但是奇怪的是在java端加密后的文件在iOS端无法正确解密打开,然后简单测试了一下,发现在java端和iOS端采用相同明文,相同密钥加密后的密文不一样!上网查了资料后发现iOS中aes加密算法采用的填充是PKCS7Padding,而java不支持PKCS7Padding,只支持PKCS5Padding。我们知道加密算法由算法+模式+填充组成,所以这两者不同的填充算法导致相同明文相同密钥加密后出现密文不一致的情况。那么我们需要在java中用PKCS7Padding来填充,这样就可以和iOS端填充算法一致了。

要实现在java端用PKCS7Padding填充,需要用到bouncycastle组件来实现,下面我会提供该包的下载。啰嗦了一大堆,下面是一个简单的测试,上代码!

001 package com.encrypt.file;

002

003

004 import java.io.UnsupportedEncodingException;

005 importjava.security.Key;

006 import java.security.Security;

007

008 importjavax.crypto.Cipher;

009 importjavax.crypto.SecretKey;

010 importjavax.crypto.spec.SecretKeySpec;

011

012 public classaes256Encryption{

013

014 /**

015 * 密钥算法

016 * java6支持56位密钥,bouncycastle支持64位

017 * */

018 public static finalString KEY_ALGORITHM="aes";

019

020 /**

021 * 加密/解密算法/工作模式/填充方式

022 *

023 * JAVA6 支持PKCS5PADDING填充方式

024 * Bouncy castle支持PKCS7Padding填充方式

025 * */

026 public static finalString CIPHER_ALGORITHM="aes/ECB/PKCS7Padding";

027

028 /**

029 *

030 * 生成密钥,java6只支持56位密钥,bouncycastle支持64位密钥

031 * @return byte[] 二进制密钥

032 * */

033 public static byte[] initkey() throwsException{

034

035 // //实例化密钥生成器

036 // Security.addProvider(new org.bouncycastle.jce.provider.BouncyCastleProvider());

037 // KeyGenerator kg=KeyGenerator.getInstance(KEY_ALGORITHM, "BC");

038 // //初始化密钥生成器,aes要求密钥长度为128位、192位、256位

039 //// kg.init(256);

040 // kg.init(128);

041 // //生成密钥

042 // SecretKey secretKey=kg.generateKey();

043 // //获取二进制密钥编码形式

044 // return secretKey.getEncoded();

045 //为了便于测试,这里我把key写死了,如果大家需要自动生成,可用上面注释掉的代码

046 return new byte[] { 0x08, 0x08, 0x04, 0x0b, 0x02, 0x0f, 0x0b, 0x0c,

047 0x01, 0x03, 0x09, 0x07, 0x0c, 0x03, 0x07, 0x0a, 0x04, 0x0f,

048 0x06, 0x0f, 0x0e, 0x09, 0x05, 0x01, 0x0a, 0x0a, 0x01, 0x09,

049 0x06, 0x07, 0x09, 0x0d };

050 }

051

052 /**

053 * 转换密钥

054 * @param key 二进制密钥

055 * @return Key 密钥

056 * */

057 public static Key toKey(byte[] key) throwsException{

058 //实例化DES密钥

059 //生成密钥

060 SecretKey secretKey=newSecretKeySpec(key,KEY_ALGORITHM);

061 returnsecretKey;

062 }

063

064 /**

065 * 加密数据

066 * @param data 待加密数据

067 * @param key 密钥

068 * @return byte[] 加密后的数据

069 * */

070 public static byte[] encrypt(byte[] data,byte[] key) throwsException{

071 //还原密钥

072 Key k=toKey(key);

073 /**

074 * 实例化

075 * 使用 PKCS7PADDING 填充方式,按如下方式实现,就是调用bouncycastle组件实现

076 * Cipher.getInstance(CIPHER_ALGORITHM,"BC")

077 */

078 Security.addProvider(new org.bouncycastle.jce.provider.BouncyCastleProvider());

079 Cipher cipher=Cipher.getInstance(CIPHER_ALGORITHM, "BC");

080 //初始化,设置为加密模式

081 cipher.init(Cipher.ENCRYPT_MODE, k);

082 //执行操作

083 returncipher.doFinal(data);

084 }

085 /**

086 * 解密数据

087 * @param data 待解密数据

088 * @param key 密钥

089 * @return byte[] 解密后的数据

090 * */

091 public static byte[] decrypt(byte[] data,byte[] key) throwsException{

092 //欢迎密钥

093 Key k =toKey(key);

094 /**

095 * 实例化

096 * 使用 PKCS7PADDING 填充方式,按如下方式实现,就是调用bouncycastle组件实现

097 * Cipher.getInstance(CIPHER_ALGORITHM,"BC")

098 */

099 Cipher cipher=Cipher.getInstance(CIPHER_ALGORITHM);

100 //初始化,设置为解密模式

101 cipher.init(Cipher.DECRYPT_MODE, k);

102 //执行操作

103 returncipher.doFinal(data);

104 }

105 /**

106 * @param args

107 * @throws UnsupportedEncodingException

108 * @throws Exception

109 */

110 public static void main(String[] args) throwsUnsupportedEncodingException{

111

112 String str="aes";

113 System.out.println("原文:"+str);

114

115 //初始化密钥

116 byte[] key;

117 try {

118 key = aes256Encryption.initkey();

119 System.out.print("密钥:");

120 for(int i = 0;ikey.length;i++){

121 System.out.printf("%x", key[i]);

122 }

123 System.out.print("\n");

124 //加密数据

125 byte[] data=aes256Encryption.encrypt(str.getBytes(), key);

126 System.out.print("加密后:");

127 for(int i = 0;idata.length;i++){

128 System.out.printf("%x", data[i]);

129 }

130 System.out.print("\n");

131

132 //解密数据

133 data=aes256Encryption.decrypt(data, key);

134 System.out.println("解密后:"+newString(data));

135 } catch (Exception e) {

136 // TODO Auto-generated catch block

137 e.printStackTrace();

138 }

139

140 }

141 }

运行程序后的结果截图:

ViewController.m文件

01 //

02 // ViewController.m

03 // aes256EncryptionDemo

04 //

05 // Created by 孙 裔 on 12-12-13.

06 // Copyright (c) 2012年 rich sun. All rights reserved.

07 //

08

09 #import "ViewController.h"

10 #import "EncryptAndDecrypt.h"

11

12 @interface ViewController ()

13

14 @end

15

16 @implementation ViewController

17 @synthesize plainTextField;

18 - (void)viewDidLoad

19 {

20 [super viewDidLoad];

21 // Do any additional setup after loading the view, typically from a nib.

22 }

23

24 - (void)didReceiveMemoryWarning

25 {

26 [super didReceiveMemoryWarning];

27 // Dispose of any resources that can be recreated.

28 }

29 //这个函数实现了用户输入完后点击视图背景,关闭键盘

30 - (IBAction)backgroundTap:(id)sender{

31 [plainTextField resignFirstResponder];

32 }

33

34 - (IBAction)encrypt:(id)sender {

35

36 NSString *plainText = plainTextField.text;//明文

37 NSData *plainTextData = [plainText dataUsingEncoding:NSUTF8StringEncoding];

38

39 //为了测试,这里先把密钥写死

40 Byte keyByte[] = {0x08,0x08,0x04,0x0b,0x02,0x0f,0x0b,0x0c,0x01,0x03,0x09,0x07,0x0c,0x03,

41 0x07,0x0a,0x04,0x0f,0x06,0x0f,0x0e,0x09,0x05,0x01,0x0a,0x0a,0x01,0x09,

42 0x06,0x07,0x09,0x0d};

43 //byte转换为NSData类型,以便下边加密方法的调用

44 NSData *keyData = [[NSData alloc] initWithBytes:keyByte length:32];

45 //

46 NSData *cipherTextData = [plainTextData aes256EncryptWithKey:keyData];

47 Byte *plainTextByte = (Byte *)[cipherTextData bytes];

48 for(int i=0;i[cipherTextData length];i++){

49 printf("%x",plainTextByte[i]);

50 }

51

52 }

53 @end

智能化时代的到来涉及了各种核心算法,保护算法就能保障开发者权益,杜绝市面上各种山寨品,加密芯片恰好能起到很好的保护作用,如何选择加密芯片呢?KEROS加密芯片专注于加密领域十余年,行业首选。
1.安全性:采用国际通用aes256算法加密并同时通过KAS传送,除基本认证之外,利用2K安全EEPROM,用户可以自己管理密钥和数据,实现双重保护。
2.唯一性:以定制的方式为每一位用户单独定制“专属型号CID”,多用户之间算法不兼容,并且采用固化的方法直接将算法固化到晶圆上而无需烧入。
3.序列号:每颗芯片制造生产时具有5字节全球唯一SN序列号,每颗芯片SN都不会重复。
4.防抄特性:每颗芯片都有自己独特的密钥系统,破解单颗芯片只对这颗芯片对应的产品有效,对整个同类型的产品是无效的,依旧无法通过验证。而且KEROS采用ASIC方法设计,芯片内为纯逻辑电路,封装内有40多层逻辑电路整合了10万多个逻辑门,爆力刨片破解难度可想而知。
5.安全存储:用户可以将保密数据加密之后安全的存放到EEPROM中。安卓aes加密字符串的介绍就聊到这里吧,感谢你花时间阅读本站内容。

本文标签:安卓aes加密字符串

产品列表
产品封装
友情链接