173 2438 5004
KEROS加密芯片——品牌直销 | 免费样品 | 技术支持
当前位置:网站首页 > 资讯中心 正文 资讯中心

非对称加密算法的原理和应用

keros@mark 2022-11-06 资讯中心

很高兴和大家一起分享非对称加密算法的原理和应用的知识,希望对各位有所帮助。

本文目录一览

非对称加密算法是什么?

非对称加密(公钥加密):指加密和解密使用不同密钥的加密算法,也称为公私钥加密。假设两个用户要加密交换数据,双方交换公钥,使用时一方用对方的公钥加密,另一方即可用自己的私钥解密。如果企业中有n个用户,企业需要生成n对密钥,并分发n个公钥。假设A用B的公钥加密消息,用A的私钥签名,B接到消息后,首先用A的公钥验证签名,确认后用自己的私钥解密消息。由于公钥是可以公开的,用户只要保管好自己的私钥即可,因此加密密钥的分发将变得 十分简单。同时,由于每个用户的私钥是唯一的,其他用户除了可以通过信息发送者的公钥来验证信息的来源是否真实,还可以通过数字签名确保发送者无法否认曾发送过该信息。

链乔教育在线旗下学硕创新区块链技术工作站是中国教育部学校规划建设发展中心开展的“智慧学习工场2020-学硕创新工作站 ”唯一获准的“区块链技术专业”试点工作站。专业站立足为学生提供多样化成长路径,推进专业学位研究生产学研结合培养模式改革,构建应用型、复合型人才培养体系。

对称加密算法与非对称加密算法的特点及用途

对称加密算法

对称加密算法是应用较早的加密算法,技术成熟。在对称加密算法中,数据发信方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。收信方收到密文后,若想解读原文,则需要使用加密用过的密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密,这就要求解密方事先必须知道加密密钥。

对称加密算法的特点是算法公开、计算量小、加密速度快、加密效率高。不足之处是,交易双方都使用同样钥匙,安全性得不到保证。此外,每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量成几何级数增长,密钥管理成为用户的负担。对称加密算法在分布式网络系统上使用较为困难,主要是因为密钥管理困难,使用成本较高。在计算机专网系统中广泛使用的对称加密算法有des、idea和aes。

不对称加密算法

不对称加密算法使用两把完全不同但又是完全匹配的一对钥匙—公钥和私钥。在使用不对称加密算法加密文件时,只有使用匹配的一对公钥和私钥,才能完成对明文的加密和解密过程。加密明文时采用公钥加密,解密密文时使用私钥才能完成,而且发信方(加密者)知道收信方的公钥,只有收信方(解密者)才是唯一知道自己私钥的人。不对称加密算法的基本原理是,如果发信方想发送只有收信方才能解读的加密信息,发信方必须首先知道收信方的公钥,然后利用收信方的公钥来加密原文;收信方收到加密密文后,使用自己的私钥才能解密密文。显然,采用不对称加密算法,收发信双方在通信之前,收信方必须将自己早已随机生成的公钥送给发信方,而自己保留私钥。由于不对称算法拥有两个密钥,因而特别适用于分布式系统中的数据加密。广泛应用的不对称加密算法有rsa算法和美国国家标准局提出的dsa。以不对称加密算法为基础的加密技术应用非常广泛。

密码学基础(三):非对称加密(RSA算法原理)

加密和解密使用的是两个不同的秘钥,这种算法叫做非对称加密。非对称加密又称为公钥加密,RSA只是公钥加密的一种。

现实生活中有签名,互联网中也存在签名。签名的作用有两个,一个是身份验证,一个是数据完整性验证。数字签名通过摘要算法来确保接收到的数据没有被篡改,再通过签名者的私钥加密,只能使用对应的公钥解密,以此来保证身份的一致性。

数字证书是将个人信息和数字签名放到一起,经由CA机构的私钥加密之后生成。当然,不经过CA机构,由自己完成签名的证书称为自签名证书。CA机构作为互联网密码体系中的基础机构,拥有相当高级的安全防范能力,所有的证书体系中的基本假设或者前提就是CA机构的私钥不被窃取,一旦 CA J机构出事,整个信息链将不再安全。

CA证书的生成过程如下:

证书参与信息传递完成加密和解密的过程如下:

互质关系:互质是公约数只有1的两个整数,1和1互质,13和13就不互质了。

欧拉函数:表示任意给定正整数 n,在小于等于n的正整数之中,有多少个与 n 构成互质关系,其表达式为:

其中,若P为质数,则其表达式可以简写为:

情况一:φ(1)=1

1和任何数都互质,所以φ(1)=1;

情况二:n 是质数, φ(n)=n-1

因为 n 是质数,所以和小于自己的所有数都是互质关系,所以φ(n)=n-1;

情况三:如果 n 是质数的某一个次方,即 n = p^k ( p 为质数,k 为大于等于1的整数),则φ(n)=(p-1)p^(k-1)

因为 p 为质数,所以除了 p 的倍数之外,小于 n 的所有数都是 n 的质数;

情况四:如果 n 可以分解成两个互质的整数之积,n = p1 × p2,则φ(n) = φ(p1p2) = φ(p1)φ(p2)

情况五:基于情况四,如果 p1 和 p2 都是质数,且 n=p1 × p2,则φ(n) = φ(p1p2) = φ(p1)φ(p2)=(p1-1)(p2-1)

而 RSA 算法的基本原理就是欧拉函数中的第五种情况,即: φ(n)=(p1-1)(p2-1);

如果两个正整数 a 和 n 互质,那么一定可以找到整数 b,使得 ab-1 被 n 整除,或者说ab被n除的余数是1。这时,b就叫做a的“模反元素”。欧拉定理可以用来证明模反元素必然存在。

可以看到,a的 φ(n)-1 次方,就是a对模数n的模反元素。

n=p x q = 3233,3233写成二进制是110010100001,一共有12位,所以这个密钥就是12位。

在实际使用中,一般场景下选择1024位长度的数字,更高安全要求的场景下,选择2048位的数字,这里作为演示,选取p=61和q=53;

因为n、p、q都为质数,所以φ(n) = (p-1)(q-1)=60×52= 3120

注意,这里是和φ(n) 互互质而不是n!假设选择的值是17,即 e=17;

模反元素就是指有一个整数 d,可以使得 ed 被 φ(n) 除的余数为1。表示为:(ed-1)=φ(n) y -- 17d=3120y+1,算出一组解为(2753,15),即 d=2753,y=-15,也就是(17 2753-1)/3120=15。

注意,这里不能选择3119,否则公私钥相同??

公钥:(n,e)=(3233,2753)

私钥:(n,d)=(3233,17)

公钥是公开的,也就是说m=p*q=3233是公开的,那么怎么求e被?e是通过模反函数求得,17d=3120y+1,e是公开的等于17,这时候想要求d就要知道3120,也就是φ(n),也就是φ(3233),说白了,3233是公开的,你能对3233进行因数分解,你就能知道d,也就能破解私钥。

正常情况下,3233我们可以因数分解为61*53,但是对于很大的数字,人类只能通过枚举的方法来因数分解,所以RSA安全性的本质就是:对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。

人类已经分解的最大整数是:

这个人类已经分解的最大整数为232个十进制位,768个二进制位,比它更大的因数分解,还没有被报道过,因此目前被破解的最长RSA密钥就是768位。所以实际使用中的1024位秘钥基本安全,2048位秘钥绝对安全。

网上有个段子:

已经得出公私钥的组成:

公钥:(n,e)=(3233,2753)

私钥:(n,d)=(3233,17)

加密的过程就是

解密过程如下:

其中 m 是要被加密的数字,c 是加密之后输出的结果,且 m n ,其中解密过程一定成立可以证明的,这里省略证明过程。

总而言之,RSA的加密就是使用模反函数对数字进行加密和求解过程,在实际使用中因为 m n必须成立,所以就有两种加密方法:

对称加密存在虽然快速,但是存在致命的缺点就是秘钥需要传递。非对称加密虽然不需要传递秘钥就可以完成加密和解密,但是其致命缺点是速度不够快,不能用于高频率,高容量的加密场景。所以才有了两者的互补关系,在传递对称加密的秘钥时采用非对称加密,完成秘钥传送之后采用对称加密,如此就可以完美互补。

智能化时代的到来涉及了各种核心算法,保护算法就能保障开发者权益,杜绝市面上各种山寨品,加密芯片恰好能起到很好的保护作用,如何选择加密芯片呢?KEROS加密芯片专注于加密领域十余年,行业首选。
1.安全性:采用国际通用aes256算法加密并同时通过KAS传送,除基本认证之外,利用2K安全EEPROM,用户可以自己管理密钥和数据,实现双重保护。
2.唯一性:以定制的方式为每一位用户单独定制“专属型号CID”,多用户之间算法不兼容,并且采用固化的方法直接将算法固化到晶圆上而无需烧入。
3.序列号:每颗芯片制造生产时具有5字节全球唯一SN序列号,每颗芯片SN都不会重复。
4.防抄特性:每颗芯片都有自己独特的密钥系统,破解单颗芯片只对这颗芯片对应的产品有效,对整个同类型的产品是无效的,依旧无法通过验证。而且KEROS采用ASIC方法设计,芯片内为纯逻辑电路,封装内有40多层逻辑电路整合了10万多个逻辑门,爆力刨片破解难度可想而知。
5.安全存储:用户可以将保密数据加密之后安全的存放到EEPROM中。非对称加密算法的原理和应用的介绍就聊到这里吧,感谢你花时间阅读本站内容。

产品列表
产品封装
友情链接