173 2438 5004
KEROS加密芯片——品牌直销 | 免费样品 | 技术支持
当前位置:网站首页 > 资讯中心 正文 资讯中心

非对称加密技术原理与应用实例

keros@mark 2022-11-06 资讯中心

本文目录一览

非对称加密的代表例子有哪些?

非对称加密主要算法: RSA、Elgamal、背包算法、Rabin、D-H、ECC(椭圆曲线加密算法)。

使用最广泛的是RSA算法,Elgamal是另一种常用的非对称加密算法。

经典的非对称加密算法如RSA算法等安全性都相当高.

非对称加密的典型应用是数字签名。

简要说说对称加密和非对称加密的原理以及区别是什么

对称加密的原理是数据发送方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。接收方收到密文后,若想解读原文,则需要使用加密密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。

非对称加密的原理是甲方首先生成一对密钥同时将其中的一把作为公开密钥;得到公开密钥的乙方再使用该密钥对需要加密的信息进行加密后再发送给甲方;甲方再使用另一把对应的私有密钥对加密后的信息进行解密,这样就实现了机密数据传输。

对称加密和非对称加密的区别为:密钥不同、安全性不同、数字签名不同。

一、密钥不同

1、对称加密:对称加密加密和解密使用同一个密钥。

2、非对称加密:非对称加密加密和解密所使用的不是同一个密钥,需要两个密钥来进行加密和解密。

二、安全性不同

1、对称加密:对称加密如果用于通过网络传输加密文件,那么不管使用任何方法将密钥告诉对方,都有可能被窃听。

2、非对称加密:非对称加密因为它包含有两个密钥,且仅有其中的“公钥”是可以被公开的,接收方只需要使用自己已持有的私钥进行解密,这样就可以很好的避免密钥在传输过程中产生的安全问题。

三、数字签名不同

1、对称加密:对称加密不可以用于数字签名和数字鉴别。

2、非对称加密:非对称加密可以用于数字签名和数字鉴别。

非对称加密算法有哪些

RSA:RSA 是一种目前应用非常广泛、历史也比较悠久的非对称秘钥加密技术,在1977年被麻省理工学院的罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)三位科学家提出,由于难于破解,RSA 是目前应用最广泛的数字加密和签名技术,比如国内的支付宝就是通过RSA算法来进行签名验证。它的安全程度取决于秘钥的长度,目前主流可选秘钥长度为 1024位、2048位、4096位等,理论上秘钥越长越难于破解,按照维基百科上的说法,小于等于256位的秘钥,在一台个人电脑上花几个小时就能被破解,512位的秘钥和768位的秘钥也分别在1999年和2009年被成功破解,虽然目前还没有公开资料证实有人能够成功破解1024位的秘钥,但显然距离这个节点也并不遥远,所以目前业界推荐使用 2048 位或以上的秘钥,不过目前看 2048 位的秘钥已经足够安全了,支付宝的官方文档上推荐也是2048位,当然更长的秘钥更安全,但也意味着会产生更大的性能开销。

DSA:既 Digital Signature Algorithm,数字签名算法,他是由美国国家标准与技术研究所(NIST)与1991年提出。和 RSA 不同的是 DSA 仅能用于数字签名,不能进行数据加密解密,其安全性和RSA相当,但其性能要比RSA快。

ECDSA:Elliptic Curve Digital Signature Algorithm,椭圆曲线签名算法,是ECC(Elliptic curve cryptography,椭圆曲线密码学)和 DSA 的结合,椭圆曲线在密码学中的使用是在1985年由Neal Koblitz和Victor Miller分别独立提出的,相比于RSA算法,ECC 可以使用更小的秘钥,更高的效率,提供更高的安全保障,据称256位的ECC秘钥的安全性等同于3072位的RSA秘钥,和普通DSA相比,ECDSA在计算秘钥的过程中,部分因子使用了椭圆曲线算法。

密码学基础(三):非对称加密(RSA算法原理)

加密和解密使用的是两个不同的秘钥,这种算法叫做非对称加密。非对称加密又称为公钥加密,RSA只是公钥加密的一种。

现实生活中有签名,互联网中也存在签名。签名的作用有两个,一个是身份验证,一个是数据完整性验证。数字签名通过摘要算法来确保接收到的数据没有被篡改,再通过签名者的私钥加密,只能使用对应的公钥解密,以此来保证身份的一致性。

数字证书是将个人信息和数字签名放到一起,经由CA机构的私钥加密之后生成。当然,不经过CA机构,由自己完成签名的证书称为自签名证书。CA机构作为互联网密码体系中的基础机构,拥有相当高级的安全防范能力,所有的证书体系中的基本假设或者前提就是CA机构的私钥不被窃取,一旦 CA J机构出事,整个信息链将不再安全。

CA证书的生成过程如下:

证书参与信息传递完成加密和解密的过程如下:

互质关系:互质是公约数只有1的两个整数,1和1互质,13和13就不互质了。

欧拉函数:表示任意给定正整数 n,在小于等于n的正整数之中,有多少个与 n 构成互质关系,其表达式为:

其中,若P为质数,则其表达式可以简写为:

情况一:φ(1)=1

1和任何数都互质,所以φ(1)=1;

情况二:n 是质数, φ(n)=n-1

因为 n 是质数,所以和小于自己的所有数都是互质关系,所以φ(n)=n-1;

情况三:如果 n 是质数的某一个次方,即 n = p^k ( p 为质数,k 为大于等于1的整数),则φ(n)=(p-1)p^(k-1)

因为 p 为质数,所以除了 p 的倍数之外,小于 n 的所有数都是 n 的质数;

情况四:如果 n 可以分解成两个互质的整数之积,n = p1 × p2,则φ(n) = φ(p1p2) = φ(p1)φ(p2)

情况五:基于情况四,如果 p1 和 p2 都是质数,且 n=p1 × p2,则φ(n) = φ(p1p2) = φ(p1)φ(p2)=(p1-1)(p2-1)

而 RSA 算法的基本原理就是欧拉函数中的第五种情况,即: φ(n)=(p1-1)(p2-1);

如果两个正整数 a 和 n 互质,那么一定可以找到整数 b,使得 ab-1 被 n 整除,或者说ab被n除的余数是1。这时,b就叫做a的“模反元素”。欧拉定理可以用来证明模反元素必然存在。

可以看到,a的 φ(n)-1 次方,就是a对模数n的模反元素。

n=p x q = 3233,3233写成二进制是110010100001,一共有12位,所以这个密钥就是12位。

在实际使用中,一般场景下选择1024位长度的数字,更高安全要求的场景下,选择2048位的数字,这里作为演示,选取p=61和q=53;

因为n、p、q都为质数,所以φ(n) = (p-1)(q-1)=60×52= 3120

注意,这里是和φ(n) 互互质而不是n!假设选择的值是17,即 e=17;

模反元素就是指有一个整数 d,可以使得 ed 被 φ(n) 除的余数为1。表示为:(ed-1)=φ(n) y -- 17d=3120y+1,算出一组解为(2753,15),即 d=2753,y=-15,也就是(17 2753-1)/3120=15。

注意,这里不能选择3119,否则公私钥相同??

公钥:(n,e)=(3233,2753)

私钥:(n,d)=(3233,17)

公钥是公开的,也就是说m=p*q=3233是公开的,那么怎么求e被?e是通过模反函数求得,17d=3120y+1,e是公开的等于17,这时候想要求d就要知道3120,也就是φ(n),也就是φ(3233),说白了,3233是公开的,你能对3233进行因数分解,你就能知道d,也就能破解私钥。

正常情况下,3233我们可以因数分解为61*53,但是对于很大的数字,人类只能通过枚举的方法来因数分解,所以RSA安全性的本质就是:对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。

人类已经分解的最大整数是:

这个人类已经分解的最大整数为232个十进制位,768个二进制位,比它更大的因数分解,还没有被报道过,因此目前被破解的最长RSA密钥就是768位。所以实际使用中的1024位秘钥基本安全,2048位秘钥绝对安全。

网上有个段子:

已经得出公私钥的组成:

公钥:(n,e)=(3233,2753)

私钥:(n,d)=(3233,17)

加密的过程就是

解密过程如下:

其中 m 是要被加密的数字,c 是加密之后输出的结果,且 m n ,其中解密过程一定成立可以证明的,这里省略证明过程。

总而言之,RSA的加密就是使用模反函数对数字进行加密和求解过程,在实际使用中因为 m n必须成立,所以就有两种加密方法:

对称加密存在虽然快速,但是存在致命的缺点就是秘钥需要传递。非对称加密虽然不需要传递秘钥就可以完成加密和解密,但是其致命缺点是速度不够快,不能用于高频率,高容量的加密场景。所以才有了两者的互补关系,在传递对称加密的秘钥时采用非对称加密,完成秘钥传送之后采用对称加密,如此就可以完美互补。

对称加密算法与非对称加密算法的特点及用途

对称加密算法

对称加密算法是应用较早的加密算法,技术成熟。在对称加密算法中,数据发信方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。收信方收到密文后,若想解读原文,则需要使用加密用过的密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密,这就要求解密方事先必须知道加密密钥。

对称加密算法的特点是算法公开、计算量小、加密速度快、加密效率高。不足之处是,交易双方都使用同样钥匙,安全性得不到保证。此外,每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量成几何级数增长,密钥管理成为用户的负担。对称加密算法在分布式网络系统上使用较为困难,主要是因为密钥管理困难,使用成本较高。在计算机专网系统中广泛使用的对称加密算法有des、idea和aes。

不对称加密算法

不对称加密算法使用两把完全不同但又是完全匹配的一对钥匙—公钥和私钥。在使用不对称加密算法加密文件时,只有使用匹配的一对公钥和私钥,才能完成对明文的加密和解密过程。加密明文时采用公钥加密,解密密文时使用私钥才能完成,而且发信方(加密者)知道收信方的公钥,只有收信方(解密者)才是唯一知道自己私钥的人。不对称加密算法的基本原理是,如果发信方想发送只有收信方才能解读的加密信息,发信方必须首先知道收信方的公钥,然后利用收信方的公钥来加密原文;收信方收到加密密文后,使用自己的私钥才能解密密文。显然,采用不对称加密算法,收发信双方在通信之前,收信方必须将自己早已随机生成的公钥送给发信方,而自己保留私钥。由于不对称算法拥有两个密钥,因而特别适用于分布式系统中的数据加密。广泛应用的不对称加密算法有rsa算法和美国国家标准局提出的dsa。以不对称加密算法为基础的加密技术应用非常广泛。

产品的开发快则一个月,慢则一年,那么如何杜绝市面上各种山寨也成为了我们必须要关注的问题,加密芯片可以做到这点,在保障开发者权益的同时也保护了消费者权益,KEROS加密芯片作为该领域的领头者,一直在尽力贡献一份力。特点如下:接口:标准I2C协议接口;算法: 标准aes256 / KAS算法;特殊接口:Random Stream Cipher for Interface;工作温度:工业级 -40℃ ~+85℃;频率:400Khz;存储:2K字节EEPROM(可选);电压:1.8V~3.6V;封装:SOT23-6,SOP8,TDFN-6。非对称加密技术原理与应用实例的介绍就聊到这里吧,感谢你花时间阅读本站内容,谢谢。

产品列表
产品封装
友情链接