今天给各位分享rsa加密方案怎么进行的的知识,如果能碰巧解决你现在面临的问题,别忘了关注本站。
欧拉函数通式: 若a可以写成 a=P1^α1...Pn^αn,其中P1...Pn为素数,α1...αn为正整数,则我们有
φ(a) = (P1^(α1-1))(P1-1)...(Pn^(αn-1))(Pn-1),由此我们可得二元一次情况下的化简,若a = pq(pq均为素数),有φ(a) =(p-1)(q-1)
欧拉定理:(a,m)= 1时,a^φ(m) = 1(modm)
//上述定理参见初等数论2第8-14页。
若a,b是两个互素的正整数,一定存在两个数x,y使得ax+by=1,这里因为xy可以做正负变化,所以写成ax-by = 1也行
即,若a,b0且(a,b)= 1,一定存在两个数使 ax = 1(modb)
//参见初等数论1第45页
a=b(modm)时,有a^n=b^n(modm)
//初等数论1第58页
我们取两个大素数pq,并令他们的积为模数n。
根据通式,我们有φ(n) =(p-1)(q-1)
取与φ(n)互素且小于φ(n)的公钥e,则一定存在e的逆元d使得 ed = 1(modφ(n)),取d为私钥
假设我们需要给消息M加密,我们的消息M必须与n互素,又由于n=pq,M只需要小于n且不等于p或者q即可。
加密时,我们求得加密数 C1 = M^e(modn)
解密时,我们求得解密数 C2 = C1^d(modn)
所以加密时,我们需要e,n对,而解密时,我们需要d,n对。
我们将要来证明C2=M:
因为 (M^e(modn))^d = M^ed(modn),所以有 C2 = M^ed(modn),
因为ed = 1+ kφ(n),所以有C2 = M^(1+kφ(n))(modn ) = M*(M^φ(n))^k(modn)
因为欧拉定理有M^φ(n) = 1(modn),所以C2 = M(modn),又因为C2与M运算过程中恒小于n,所以C2=M。
总结一下 C2 = C1^d(modn) = M^ed(modn) = M^(1+kφ(n))(modn) = M(modn)。
而秘钥运算的条件是,e与φ(n)互素,且M与n互素。
公钥和私钥是一对一的关系,因为私钥取的是公钥关于模数n的1(modφ(n))的逆元,所以公私钥是一对一的关系,不管公钥还是私钥改变,逆元一定会跟着改变。
虽然公钥和私钥都可以通过增加n的整数倍使其对n的余数不变,但是同余的新公钥是没有意义的,因为n是暴露在公钥里的。
RSA算法非常简单,概述如下:
找两素数p和q
取n=p*q
取t=(p-1)*(q-1)
取任何一个数e,要求满足et并且e与t互素(就是最大公因数为1)
取d*e%t==1
这样最终得到三个数: n d e
设消息为数M (M n)
设c=(M**d)%n就得到了加密后的消息c
设m=(c**e)%n则 m == M,从而完成对c的解密。
注:**表示次方,上面两式中的d和e可以互换。
在对称加密中:
n d两个数构成公钥,可以告诉别人;
n e两个数构成私钥,e自己保留,不让任何人知道。
给别人发送的信息使用e加密,只要别人能用d解开就证明信息是由你发送的,构成了签名机制。
别人给你发送信息时使用d加密,这样只有拥有e的你能够对其解密。
rsa的安全性在于对于一个大数n,没有有效的方法能够将其分解
从而在已知n d的情况下无法获得e;同样在已知n e的情况下无法
求得d。
rsa简洁幽雅,但计算速度比较慢,通常加密中并不是直接使用rsa 来对所有的信息进行加密,
最常见的情况是随机产生一个对称加密的密钥,然后使用对称加密算法对信息加密,之后用
RSA对刚才的加密密钥进行加密。
最后需要说明的是,当前小于1024位的N已经被证明是不安全的
自己使用中不要使用小于1024位的RSA,最好使用2048位的。
前几天看到一句话,“我们中的很多人把一生中最灿烂的笑容大部分都献给了手机和电脑屏幕”。心中一惊,这说明了什么?手机和电脑已经成为了我们生活中的一部分,所以才会有最懂你的不是你,也不是你男朋友,而是大数据。
如此重要的个人数据,怎样才能保证其在互联网上的安全传输呢?当然要靠各种加密算法。说起加密算法,大家都知道有哈希、对称加密和非对称加密了。哈希是一个散列函数,具有不可逆操作;对称加密即加密和解密使用同一个密钥,而非对称加密加密和解密自然就是两个密钥了。稍微深入一些的,还要说出非对称加密算法有DES、3DES、RC4等,非对称加密算法自然就是RSA了。那么当我们聊起RSA时,我们又在聊些什么呢?今天笔者和大家一起探讨一下,有不足的地方,还望各位朋友多多提意见,共同进步。
RSA简介:1976年由麻省理工学院三位数学家共同提出的,为了纪念这一里程碑式的成就,就用他们三个人的名字首字母作为算法的命名。即 罗纳德·李维斯特 (Ron Rivest)、 阿迪·萨莫尔 (Adi Shamir)和 伦纳德·阿德曼 (Leonard Adleman)。
公钥:用于加密,验签。
私钥:解密,加签。
通常知道了公钥和私钥的用途以后,即可满足基本的聊天需求了。但是我们今天的主要任务是来探究一下RSA加解密的原理。
说起加密算法的原理部分,肯定与数学知识脱不了关系。
我们先来回忆几个数学知识:
φn = φ(A*B)=φ(A)*φ(B)=(A-1)*(B-1)。
这个公式主要是用来计算给定一个任意的正整数n,在小于等于n的正整数中,有多少个与n构成互质的关系。
其中n=A*B,A与B互为质数,但A与B本身并不要求为质数,可以继续展开,直至都为质数。
在最终分解完成后,即 φ(N) = φ(p1)*φ(p2)*φ(p3)... 之后,p1,p2,p3都是质数。又用到了欧拉函数的另一个特点,即当p是质数的时候,φp = p - 1。所以有了上面给出的欧拉定理公式。
举例看一下:
计算15的欧拉函数,因为15比较小,我们可以直接看一下,小于15的正整数有 1、2、3、4、5、6、7、8、9、10、11、12、13、14。和15互质的数有1、2、4、7、8、11、13、14一共四个。
对照我们刚才的欧拉定理: 。
其他感兴趣的,大家可以自己验证。
之所以要在这里介绍欧拉函数,我们在计算公钥和私钥时候,会用到。
如果两个正整数m 和 n 互质,那么m 的 φn 次方减1,可以被n整除。
其中 .
其中当n为质数时,那么 上面看到的公式就变成了
mod n 1.
这个公式也就是著名的 费马小定理 了。
如果两个正整数e和x互为质数,那么一定存在一个整数d,不止一个,使得 e*d - 1 可以被x整除,即 e * d mode x 1。则称 d 是 e 相对于 x的模反元素。
了解了上面所讲的欧拉函数、欧拉定理和模反元素后,就要来一些化学反应了,请看图:
上面这幅图的公式变化有没有没看明白的,没看明白的咱们评论区见哈。
最终我们得到了最重要的第5个公式的变形,即红色箭头后面的:
mod n m。
其中有几个关系,需要搞明白,m 与 n 互为质数,φn = x,d 是e相对于x的模反元素。
有没有看到一些加解密的雏形。
从 m 到 m。 这中间涵盖了从加密到解密的整个过程,但是缺少了我们想要的密文整个过程。
OK,下面引入本文的第四个数学公式:
我们来看一下整个交换流程:
1、客户端有一个数字13,服务端有一个数字15;
2、客户端通过计算 3的13次方 对 17 取余,得到数字12; 将12发送给服务端;同时服务端通过计算3的15次方,对17取余,得到数字6,将6发送给客户端。至此,整个交换过程完成。
3、服务端收到数字12以后,继续计算,12的15次方 对 17取余,得到 数字10。
4、客户端收到数字 6以后,继续计算,6的13次方 对 17 取余,得到数字 10。
有没有发现双方,最终得到了相同的内容10。但是这个数字10从来没有在网络过程中出现过。
好,讲到这里,可能有些人已经恍然大悟,这就是加密过程了,但是也有人会产生疑问,为什么要取数字3 和 17 呢,这里还牵涉到另一个数学知识,原根的问题。即3是17的原根。看图
有没有发现规律,3的1~16次方,对17取余,得到的整数是从1~16。这时我们称3为17的原根。也就是说上面的计算过程中有一组原根的关系。这是最早的迪菲赫尔曼秘钥交换算法。
解决了为什么取3和17的问题后,下面继续来看最终的RSA是如何产生的:
还记得我们上面提到的欧拉定理吗,其中 m 与 n 互为质数,n为质数,d 是 e 相对于 φn的模反元素。
当迪菲赫尔曼密钥交换算法碰上欧拉定理会产生什么呢?
我们得到下面的推论:
好,到这里我们是不是已经看到了整个的加密和解密过程了。
其中 m 是明文;c 是密文; n 和 e 为公钥;d 和 n 为私钥 。
其中几组数字的关系一定要明确:
1、d是e 相对于 φn 的模反元素,φn = n-1,即 e * d mod n = 1.
2、m 小于 n,上面在讲迪菲赫尔曼密钥交换算法时,提到原根的问题,在RSA加密算法中,对m和n并没有原根条件的约束。只要满足m与n互为质数,n为质数,且m n就可以了。
OK,上面就是RSA加密算法的原理了,经过上面几个数学公式的狂轰乱炸,是不是有点迷乱了,给大家一些时间理一下,后面会和大家一起来验证RSA算法以及RSA为什么安全。
如果需要理解RSA的加密原理,需要理解以下理论:
等同于求一元二次方程 23 * d + 192 * y = 1
可以求得其中一解为(d=167,y=-20)
至此就完成了所有的计算
对于上述例子的到公钥(221,23)和私钥(221,167)
在上述的计算过程中一共用到了
上面用到的数中只有公钥部分是公开的,即(221,23)。那么我们是否可以通过公钥来推到出私钥部分,即已知n和e,推到出d?
(1)ed 1(mod (n)),只有知道 (n)才能解出d
(2) (n)= (p) (q)= (p-1) (q-1),只有知道p和q才能得到 (n)
(3)n=p q,就需要对n进行因式分解
那么如果可以对n因式分解就可以求出d,也就意味着私匙被破解
那么RSA加密的可靠性就在于对n因式分解的难度,而现在对一个整数n做因式分解并没有巧妙的算法,只有通过暴力破解计算。在实际应用中的n取值通常在1024位以上,而公开已知的可因式分解的最大数为768位。所以现阶段来说RSA加密是可靠的。
现在我们就可以进行加密和解密了
我们使用上面生成的公钥(221,23)来加密。如果我们需要加密的信息是m( m必须为整数并且m要小于n ),m取56,可以用以下公式求出加密串c:
c (mod n)
10 (mod 221)
可以求出加密后的结果c为10
密钥为(221,167),加密结果c=10,可以使用以下公式求出被加密的信息
m (mod n) 即加密结果的d次方除以n的余数为m
56 (mod 221)
RSA加密属于块加密算法,总是在一个固定长度的块上进行操作。如果被加密的字符串过长,则需要对字符串进行切割,如果字符串过短则需要进行填充。
以下主介绍一下RSA_PKCS1_PADDING填充模式以及RSA_NO_PADDING模式
此填充模式是最常用的填充模式,在此填充模式下输入的长度受加密钥的长度限制,输入的最大长度为加密钥的位数k-11。如果公钥的长度为1024位即128字节,那么输入的长度最多为128-11=117字节。如果长度小于117就需要填充。如果输入T的长度为55字节,填充后的块为EM,则EM格式如下:
EM= 0x00 || BT || PS || 0x00 || T
在此填充模式下,输入的长度最多和RSA公钥长度一样长,如果小于公钥长度则会在前面填充0x00。如果公钥长度是128字节,输入T的长度为55字节,填充后的块为EM,则EM格式如下:
EM=P || T
参考:
产品的开发快则一个月,慢则一年,那么如何杜绝市面上各种山寨也成为了我们必须要关注的问题,加密芯片可以做到这点,在保障开发者权益的同时也保护了消费者权益,KEROS加密芯片作为该领域的领头者,一直在尽力贡献一份力。特点如下:接口:标准I2C协议接口;算法: 标准aes256 / KAS算法;特殊接口:Random Stream Cipher for Interface;工作温度:工业级 -40℃ ~+85℃;频率:400Khz;存储:2K字节EEPROM(可选);电压:1.8V~3.6V;封装:SOT23-6,SOP8,TDFN-6。rsa加密方案怎么进行的的介绍就聊到这里吧,感谢你花时间阅读本站内容,谢谢。