173 2438 5004
KEROS加密芯片——品牌直销 | 免费样品 | 技术支持
当前位置:网站首页 > 资讯中心 正文 资讯中心

主流的加密算法有哪些

keros@mark 2022-11-07 资讯中心

本文目录一览

常用的加密算法有哪些

对称加密算法(秘密钥匙加密)和非对称加密算法(公开密钥加密)。

对称加密算法用来对敏感数据等信息进行加密,常用的算法包括:

DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合。

3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高。

aes(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高;

aes

常见的非对称加密算法如下:

RSA:由 RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的;

DSA(Digital Signature Algorithm):数字签名算法,是一种标准的 DSS(数字签名标准);

ECC(Elliptic Curves Cryptography):椭圆曲线密码编码学。

当前主流的加密技术有哪些

目前主流的加密技术有对称加密例如DES,3DES和aes,然后还有非对称加密技术:例如RSA和椭圆加密算法。对称加密的话,就是用来加密和解密的密钥是一样的,非对称加密的话,加密的密钥和解密的密钥是不一样的,用加密的密钥加密以后,只有配对的另外一个密钥才能解开。

另外我们还可以常常看到MD5,SHA,SHA1之类的算法,其实他们不是加密算法,因为他们的结算结果不可逆,你没法从结果得到输入的数据是什么,他们的用途主要是为了防止泄密和修改数据,因为对于这些算法来说,每一个输入只能有一个输出,修改了输入就会使得输出变化很大,所以被人修改了数据的话通过这个算法就能知道了。另外我校验密码的时候,如果只是通过这个计算结果来对比的话,其他人如果不知道我的密码,即使他能解码我的程序也不行,因为程序里面只有结果,没有输入的密码。

数据加密算法有哪些

DES加密算法,aes加密算法,RSA加密算法,Base64加密算法,MD5加密算法,SHA1加密算法。

由于计算机软件的非法复制,通信的泄密、数据安全受到威胁,解密及盗版问题日益严重,甚至引发国际争端,所以在信息安全技术中,加密技术占有不可替代的位置,因此对信息加密技术和加密手段的研究与开发,受到各国计算机界的重视,发展日新月异。

常用的加密算法有哪些?

对称密钥加密

对称密钥加密 Symmetric Key Algorithm 又称为对称加密、私钥加密、共享密钥加密:这类算法在加密和解密时使用相同的密钥,或是使用两个可以简单的相互推算的密钥,对称加密的速度一般都很快。

分组密码

分组密码 Block Cipher 又称为“分块加密”或“块加密”,将明文分成多个等长的模块,使用确定的算法和对称密钥对每组分别加密解密。这也就意味着分组密码的一个优点在于可以实现同步加密,因为各分组间可以相对独立。

与此相对应的是流密码:利用密钥由密钥流发生器产生密钥流,对明文串进行加密。与分组密码的不同之处在于加密输出的结果不仅与单独明文相关,而是与一组明文相关。

DES、3DES

数据加密标准 DES Data Encryption Standard 是由IBM在美国国家安全局NSA授权下研制的一种使用56位密钥的分组密码算法,并于1977年被美国国家标准局NBS公布成为美国商用加密标准。但是因为DES固定的密钥长度,渐渐不再符合在开放式网络中的安全要求,已经于1998年被移出商用加密标准,被更安全的aes标准替代。

DES使用的Feistel Network网络属于对称的密码结构,对信息的加密和解密的过程极为相似或趋同,使得相应的编码量和线路传输的要求也减半。

DES是块加密算法,将消息分成64位,即16个十六进制数为一组进行加密,加密后返回相同大小的密码块,这样,从数学上来说,64位0或1组合,就有2^64种可能排列。DES密钥的长度同样为64位,但在加密算法中,每逢第8位,相应位会被用于奇偶校验而被算法丢弃,所以DES的密钥强度实为56位。

3DES Triple DES,使用不同Key重复三次DES加密,加密强度更高,当然速度也就相应的降低。

aes

高级加密标准 aes Advanced Encryption Standard 为新一代数据加密标准,速度快,安全级别高。由美国国家标准技术研究所NIST选取Rijndael于2000年成为新一代的数据加密标准。

aes的区块长度固定为128位,密钥长度可以是128位、192位或256位。aes算法基于Substitution Permutation Network代换置列网络,将明文块和密钥块作为输入,并通过交错的若干轮代换"Substitution"和置换"Permutation"操作产生密文块。

aes加密过程是在一个4*4的字节矩阵(或称为体State)上运作,初始值为一个明文区块,其中一个元素大小就是明文区块中的一个Byte,加密时,基本上各轮加密循环均包含这四个步骤:

合并(AddRoundKey):矩阵中的每个字节与该回合密钥做XOR异或运算,其中回合密钥由主密钥通过Rijndael密钥生成方案生成,这个密钥大小跟原矩阵一致。

替换(SubBytes):矩阵中的每个字节通过一个8位查找表对应的特定字节所替换。这里的8位查找表为S-box(Substitution-box, 置换盒),用来模糊密钥与密文之间的关系,实现输入输出的非线性特征。

行混淆(ShiftRows):矩阵中的每一行的各个字节循环向左方位移,位移量随行数递增。列混淆(MixColumns):每一列的四个字节通过线性变换互相结合,即与一个固定的多项式做乘法。

安全性

已知的针对aes唯一的成功攻击是旁道攻击,2005年时使用缓存时序攻击法,破解了一个装载OpenSSL aes加密系统的客户服务器。

针对区块加密系统最常见的方式,是通过对加密循环次数较少的版本尝试攻击,然后改进算法后继续攻击高级版本,目前这个破解方法还不太实用。

另外由于aes的数据结构具有井然有序的代数结构,有一个担心就是相关的代数攻击,目前基于此的有效攻击方法也暂时没有出现。

非对称密钥加密

非对称密钥加密 Asymmetric Key Cryptography 也可称为 Public Key Cryptography 公开密钥加密:需要两个密钥,分为公钥和私钥,一个用作加密而另外一个只能用于解密,而加密的密钥并不能用来解密。

根据此特性,除了加解密的应用外,还可以确保数字签名的功能:某用户用私钥加密明文,任何人都可以用该用户的公钥解密密文,以此判定身份。

对称密钥需要一个安全的渠道可以交换共用的密钥,而非对称密钥可以将加密公钥公开发布;不过公钥加密在计算上相当复杂,性能远比不上对称加密,所以一般会利用公钥加密来交换对称密钥,然后依靠对称密钥来传输具体的信息。

RSA

RSA是由三个人的名字组成 Ron Rivest、Adi Shamir、Leonard Adleman于1977年在MIT提出,并于1987年公布,是目前最常用的公钥加密算法。

RSA算法的核心是极大整数的因式分解,理论基础在于由两个大质数算出乘积很容易,但是要从一个极大整数因式分解得出两个质数却很难。

ECC

ECC即 Elliptic Curve Cryptography 椭圆曲线密码学,是基于椭圆曲线数学建立公开密钥加密的算法。ECC的主要优势是在提供相当的安全等级情况下,密钥长度更小。

ECC的原理是根据有限域上的椭圆曲线上的点群中的离散对数问题ECDLP,而ECDLP是比因式分解问题更难的问题,是指数级的难度。而ECDLP定义为:给定素数p和椭圆曲线E,对Q=kP,在已知P,Q 的情况下求出小于p的正整数k。可以证明由k和P计算Q比较容易,而由Q和P计算k则比较困难。

数字签名

数字签名 Digital Signature 又称公钥数字签名是一种用来确保数字消息或文档真实性的数学方案。一个有效的数字签名需要给接收者充足的理由来信任消息的可靠来源,而发送者也无法否认这个签名,并且这个消息在传输过程中确保没有发生变动。

数字签名的原理在于利用公钥加密技术,签名者将消息用私钥加密,然后公布公钥,验证者就使用这个公钥将加密信息解密并对比消息。一般而言,会使用消息的散列值来作为签名对象。

典型加密算法包括

1、对称加密算法

对称加密算法是指加密和解密采用相同的密钥,是可逆的(即可解密)。aes加密算法是密码学中的高级加密标准,采用的是对称分组密码体制,密钥长度的最少支持为128。

aes加密算法是美国联邦政府采用的区块加密标准,这个标准用来替代原先的DES,已经被多方分析且广为全世界使用。

2、非对称加密

非对称加密算法,又称为公开密钥加密算法。它需要两个密钥,一个称为公开密钥 (public key),即公钥,另一个称为私有密钥 (private key),即私钥。

RSA:由 RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的;

DSA(Digital Signature Algorithm):数字签名算法,是一种标准的 DSS(数字签名标准);

ECC(Elliptic Curves Cryptography):椭圆曲线密码编码学。

3、Hash 算法

Hash 算法特别的地方在于它是一种单向算法,用户可以通过 Hash 算法对目标信息生成一段特定长度的唯一的 Hash 值,却不能通过这个 Hash 值重新获得目标信息。因此 Hash 算法常用在不可还原的密码存储、信息完整性校验等。

常见的加密算法、原理、优缺点、用途

在安全领域,利用密钥加密算法来对通信的过程进行加密是一种常见的安全手段。利用该手段能够保障数据安全通信的三个目标:

而常见的密钥加密算法类型大体可以分为三类:对称加密、非对称加密、单向加密。下面我们来了解下相关的算法原理及其常见的算法。

在加密传输中最初是采用对称密钥方式,也就是加密和解密都用相同的密钥。

1.对称加密算法采用单密钥加密,在通信过程中,数据发送方将原始数据分割成固定大小的块,经过密钥和加密算法逐个加密后,发送给接收方

2.接收方收到加密后的报文后,结合解密算法使用相同密钥解密组合后得出原始数据。

图示:

非对称加密算法采用公钥和私钥两种不同的密码来进行加解密。公钥和私钥是成对存在,公钥是从私钥中提取产生公开给所有人的,如果使用公钥对数据进行加密,那么只有对应的私钥(不能公开)才能解密,反之亦然。N 个用户通信,需要2N个密钥。

非对称密钥加密适合对密钥或身份信息等敏感信息加密,从而在安全性上满足用户的需求。

1.甲使用乙的公钥并结合相应的非对称算法将明文加密后发送给乙,并将密文发送给乙。

2.乙收到密文后,结合自己的私钥和非对称算法解密得到明文,得到最初的明文。

图示:

单向加密算法只能用于对数据的加密,无法被解密,其特点为定长输出、雪崩效应(少量消息位的变化会引起信息摘要的许多位变化)。

单向加密算法常用于提取数据指纹,验证数据的完整性、数字摘要、数字签名等等。

1.发送者将明文通过单向加密算法加密生成定长的密文串,然后传递给接收方。

2.接收方将用于比对验证的明文使用相同的单向加密算法进行加密,得出加密后的密文串。

3.将之与发送者发送过来的密文串进行对比,若发送前和发送后的密文串相一致,则说明传输过程中数据没有损坏;若不一致,说明传输过程中数据丢失了。

图示:

MD5、sha1、sha224等等

密钥交换IKE(Internet Key Exchange)通常是指双方通过交换密钥来实现数据加密和解密

常见的密钥交换方式有下面两种:

将公钥加密后通过网络传输到对方进行解密,这种方式缺点在于具有很大的可能性被拦截破解,因此不常用

DH算法是一种密钥交换算法,其既不用于加密,也不产生数字签名。

DH算法通过双方共有的参数、私有参数和算法信息来进行加密,然后双方将计算后的结果进行交换,交换完成后再和属于自己私有的参数进行特殊算法,经过双方计算后的结果是相同的,此结果即为密钥。

如:

安全性

在整个过程中,第三方人员只能获取p、g两个值,AB双方交换的是计算后的结果,因此这种方式是很安全的。

答案:使用公钥证书

公钥基础设施是一个包括硬件、软件、人员、策略和规程的集合

用于实现基于公钥密码机制的密钥和证书的生成、管理、存储、分发和撤销的功能

签证机构CA、注册机构RA、证书吊销列表CRL和证书存取库CB。

公钥证书是以数字签名的方式声明,它将公钥的值绑定到持有对应私钥的个人、设备或服务身份。公钥证书的生成遵循X.509协议的规定,其内容包括:证书名称、证书版本、序列号、算法标识、颁发者、有效期、有效起始日期、有效终止日期、公钥 、证书签名等等的内容。

1.客户A准备好要传送的数字信息(明文)。(准备明文)

2.客户A对数字信息进行哈希(hash)运算,得到一个信息摘要。(准备摘要)

3.客户A用CA的私钥(SK)对信息摘要进行加密得到客户A的数字签名,并将其附在数字信息上。(用私钥对数字信息进行数字签名)

4.客户A随机产生一个加密密钥(DES密钥),并用此密钥对要发送的信息进行加密,形成密文。 (生成密文)

5.客户A用双方共有的公钥(PK)对刚才随机产生的加密密钥进行加密,将加密后的DES密钥连同密文一起传送给乙。(非对称加密,用公钥对DES密钥进行加密)

6.银行B收到客户A传送过来的密文和加过密的DES密钥,先用自己的私钥(SK)对加密的DES密钥进行解密,得到DES密钥。(用私钥对DES密钥解密)

7.银行B然后用DES密钥对收到的密文进行解密,得到明文的数字信息,然后将DES密钥抛弃(即DES密钥作废)。(解密文)

8.银行B用双方共有的公钥(PK)对客户A的数字签名进行解密,得到信息摘要。银行B用相同的hash算法对收到的明文再进行一次hash运算,得到一个新的信息摘要。(用公钥解密数字签名)

9.银行B将收到的信息摘要和新产生的信息摘要进行比较,如果一致,说明收到的信息没有被修改过。(对比信息摘要和信息)

答案是没法保证CA的公钥没有被篡改。通常操作系统和浏览器会预制一些CA证书在本地。所以发送方应该去那些通过认证的CA处申请数字证书。这样是有保障的。

但是如果系统中被插入了恶意的CA证书,依然可以通过假冒的数字证书发送假冒的发送方公钥来验证假冒的正文信息。所以安全的前提是系统中不能被人插入非法的CA证书。

END

随着社会的发展,产品的更新速度也是越来越快,算法是方案的核心,保护开发者和消费者的权益刻不容缓,那么加密芯片在其中就扮演了重要的角色,如何选择加密芯片呢?
1.市面上加密芯片种类繁多,算法多种,加密芯片强度参差不齐,加密性能与算法、秘钥密切相关。常见的加密算法有对称算法,非对称算法,国密算法,大部分都是基于I2C、SPI或1-wire协议进行通信。加密芯片还是需要项目实际需求选择,比如对称加密算法的特点是计算量小、加密速度快、加密效率高等。
2.因为单片机软加密性能较弱且非常容易被复制,所以有了加密芯片的产生,大大增加了破解难度和生产成本。目前加密芯片广泛应用于车载电子、消费电子、美容医疗、工业控制、AI智能等行业。
3.韩国KEROS加密芯片专注加密领域十多年,高安全性、低成本,在加密保护领域受到了众多客户的高度赞扬及认可。KEROS采用先进的内置aes256安全引擎和加密功能,通过真动态数据交互并为系统中敏感信息的存储提供了安全的场所,有了它的保护电路,即使受到攻击,这些信息也可以保持安全。其封装SOP8,SOT23-6,TDFN-6集成I2C与1-wire协议满足不同应用需求。CK02AT、CK22AT、CK02AP、CK22AP支持1.8V-3.6V,256bit位秘钥长度,5bytes SN序列号,支持定制化免烧录,加密行业首选。关于主流的加密算法有哪些的介绍到此就结束了,感谢大家耐心阅读。

产品列表
产品封装
友情链接