本篇文章给大家谈谈加密算法的方法以及对应的知识点,希望对各位有所帮助。
加密方式的种类:
1、MD5
一种被广泛使用的密码散列函数,可以产生出一个128位(16字节)的散列值(hash value),用于确保信息传输完整一致。MD5由美国密码学家罗纳德·李维斯特(Ronald Linn Rivest)设计,于1992年公开,用以取代MD4算法。这套算法的程序在 RFC 1321 标准中被加以规范。
2、对称加密
对称加密采用单钥密码系统的加密方法,同一个密钥可以同时用作信息的加密和解密,这种加密方法称为对称加密,也称为单密钥加密。
3、非对称加密
与对称加密算法不同,非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥(privatekey)。公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密。
如果用私有密钥对数据进行加密,那么只有用对应的公开密钥才能解密。因为加密和解密使用的是两个不同的密钥,所以这种算法叫作非对称加密算法。
扩展资料
非对称加密工作过程
1、乙方生成一对密钥(公钥和私钥)并将公钥向其它方公开。
2、得到该公钥的甲方使用该密钥对机密信息进行加密后再发送给乙方。
3、乙方再用自己保存的另一把专用密钥(私钥)对加密后的信息进行解密。乙方只能用其专用密钥(私钥)解密由对应的公钥加密后的信息。
在传输过程中,即使攻击者截获了传输的密文,并得到了乙的公钥,也无法破解密文,因为只有乙的私钥才能解密密文。
同样,如果乙要回复加密信息给甲,那么需要甲先公布甲的公钥给乙用于加密,甲自己保存甲的私钥用于解密。
本文只是概述几种简单的传统加密算法,没有DES,没有RSA,没有想象中的高端大气上档次的东东。。。但是都是很传统很经典的一些算法
首先,提到加密,比如加密一段文字,让其不可读,一般人首先会想到的是将其中的各个字符用其他一些特定的字符代替,比如,讲所有的A用C来表示,所有的C用E表示等等…其中早的代替算法就是由Julius Caesar发明的Caesar,它是用字母表中每个字母的之后的第三个字母来代替其本身的(C=E(3,p)=(p+3) mod 26),但是,这种加密方式,很容易可以用穷举算法来破解,毕竟只有25种可能的情况..
为了改进上诉算法,增加其破解的难度,我们不用简单的有序的替代方式,我们让替代无序化,用其中字母表的一个置换(置换:有限元素的集合S的置换就是S的所有元素的有序排列,且每个元素就出现一次,如S={a,b}其置换就只有两种:ab,ba),这样的话,就有26!种方式,大大的增加了破解的难度,但是这个世界聪明人太多,虽然26!很多,但是语言本身有一定的特性,每个字母在语言中出现的相对频率可以统计出来的,这样子,只要密文有了一定数量,就可以从统计学的角度,得到准确的字母匹配了。
上面的算法我们称之为单表代替,其实单表代替密码之所以较容易被攻破,因为它带有原始字母使用频率的一些统计学特征。有两种主要的方法可以减少代替密码里明文结构在密文中的残留度,一种是对明文中的多个字母一起加密,另一种是采用多表代替密码。
先说多字母代替吧,最著名的就是playfair密码,它把明文中的双字母音节作为一个单元并将其转换成密文的双字母音节,它是一个基于由密钥词构成的5*5的字母矩阵中的,一个例子,如密钥为monarchy,将其从左往右从上往下填入后,将剩余的字母依次填入剩下的空格,其中I/J填入同一个空格:
对明文加密规则如下:
1 若p1 p2在同一行,对应密文c1 c2分别是紧靠p1 p2 右端的字母。其中第一列被看做是最后一列的右方。
2 若p1 p2在同一列,对应密文c1 c2分别是紧靠p1 p2 下方的字母。其中第一行被看做是最后一行的下方。
3 若p1 p2不在同一行,不在同一列,则c1 c2是由p1 p2确定的矩形的其他两角的字母,并且c1和p1, c2和p2同行。
4 若p1 p2相同,则插入一个事先约定的字母,比如Q 。
5 若明文字母数为奇数时,则在明文的末端添加某个事先约定的字母作为填充。
虽然相对简单加密,安全性有所提高,但是还是保留了明文语言的大部分结构特征,依旧可以破解出来,另一个有意思的多表代替密码是Hill密码,由数学家Lester Hill提出来的,其实就是利用了线性代数中的可逆矩阵,一个矩阵乘以它的逆矩阵得到单位矩阵,那么假设我们对密文每m个字母进行加密,那么将这m个字母在字母表中的序号写成矩阵形式设为P(如abc,[1,2,3]),密钥就是一个m阶的矩阵K,则C=P*K mod26,,解密的时候只要将密文乘上K的逆矩阵模26就可以了。该方法大大的增加了安全性。
在安全领域,利用密钥加密算法来对通信的过程进行加密是一种常见的安全手段。利用该手段能够保障数据安全通信的三个目标:
而常见的密钥加密算法类型大体可以分为三类:对称加密、非对称加密、单向加密。下面我们来了解下相关的算法原理及其常见的算法。
对称加密算法采用单密钥加密,在通信过程中,数据发送方将原始数据分割成固定大小的块,经过密钥和加密算法逐个加密后,发送给接收方;接收方收到加密后的报文后,结合密钥和解密算法解密组合后得出原始数据。由于加解密算法是公开的,因此在这过程中,密钥的安全传递就成为了至关重要的事了。而密钥通常来说是通过双方协商,以物理的方式传递给对方,或者利用第三方平台传递给对方,一旦这过程出现了密钥泄露,不怀好意的人就能结合相应的算法拦截解密出其加密传输的内容。
对称加密算法拥有着算法公开、计算量小、加密速度和效率高得特定,但是也有着密钥单一、密钥管理困难等缺点。
常见的对称加密算法有:
DES:分组式加密算法,以64位为分组对数据加密,加解密使用同一个算法。
3DES:三重数据加密算法,对每个数据块应用三次DES加密算法。
aes:高级加密标准算法,是美国联邦政府采用的一种区块加密标准,用于替代原先的DES,目前已被广泛应用。
Blowfish:Blowfish算法是一个64位分组及可变密钥长度的对称密钥分组密码算法,可用来加密64比特长度的字符串。
非对称加密算法采用公钥和私钥两种不同的密码来进行加解密。公钥和私钥是成对存在,公钥是从私钥中提取产生公开给所有人的,如果使用公钥对数据进行加密,那么只有对应的私钥才能解密,反之亦然。
下图为简单非对称加密算法的常见流程:
发送方Bob从接收方Alice获取其对应的公钥,并结合相应的非对称算法将明文加密后发送给Alice;Alice接收到加密的密文后,结合自己的私钥和非对称算法解密得到明文。这种简单的非对称加密算法的应用其安全性比对称加密算法来说要高,但是其不足之处在于无法确认公钥的来源合法性以及数据的完整性。
非对称加密算法具有安全性高、算法强度负复杂的优点,其缺点为加解密耗时长、速度慢,只适合对少量数据进行加密,其常见算法包括:
RSA :RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但那时想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥,可用于加密,也能用于签名。
DSA :数字签名算法,仅能用于签名,不能用于加解密。
DSS :数字签名标准,技能用于签名,也可以用于加解密。
ELGamal :利用离散对数的原理对数据进行加解密或数据签名,其速度是最慢的。
单向加密算法常用于提取数据指纹,验证数据的完整性。发送者将明文通过单向加密算法加密生成定长的密文串,然后传递给接收方。接收方在收到加密的报文后进行解密,将解密获取到的明文使用相同的单向加密算法进行加密,得出加密后的密文串。随后将之与发送者发送过来的密文串进行对比,若发送前和发送后的密文串相一致,则说明传输过程中数据没有损坏;若不一致,说明传输过程中数据丢失了。单向加密算法只能用于对数据的加密,无法被解密,其特点为定长输出、雪崩效应。常见的算法包括:MD5、sha1、sha224等等,其常见用途包括:数字摘要、数字签名等等。
密钥交换IKE(Internet Key Exchange)通常是指双方通过交换密钥来实现数据加密和解密,常见的密钥交换方式有下面两种:
1、公钥加密,将公钥加密后通过网络传输到对方进行解密,这种方式缺点在于具有很大的可能性被拦截破解,因此不常用;
2、Diffie-Hellman,DH算法是一种密钥交换算法,其既不用于加密,也不产生数字签名。DH算法的巧妙在于需要安全通信的双方可以用这个方法确定对称密钥。然后可以用这个密钥进行加密和解密。但是注意,这个密钥交换协议/算法只能用于密钥的交换,而不能进行消息的加密和解密。双方确定要用的密钥后,要使用其他对称密钥操作加密算法实际加密和解密消息。DH算法通过双方共有的参数、私有参数和算法信息来进行加密,然后双方将计算后的结果进行交换,交换完成后再和属于自己私有的参数进行特殊算法,经过双方计算后的结果是相同的,此结果即为密钥。
如:
在整个过程中,第三方人员只能获取p、g两个值,AB双方交换的是计算后的结果,因此这种方式是很安全的。
公钥基础设施是一个包括硬件、软件、人员、策略和规程的集合,用于实现基于公钥密码机制的密钥和证书的生成、管理、存储、分发和撤销的功能,其组成包括:签证机构CA、注册机构RA、证书吊销列表CRL和证书存取库CB。
PKI采用证书管理公钥,通过第三方可信任CA中心,把用户的公钥和其他用户信息组生成证书,用于验证用户的身份。
公钥证书是以数字签名的方式声明,它将公钥的值绑定到持有对应私钥的个人、设备或服务身份。公钥证书的生成遵循X.509协议的规定,其内容包括:证书名称、证书版本、序列号、算法标识、颁发者、有效期、有效起始日期、有效终止日期、公钥 、证书签名等等的内容。
CA证书认证的流程如下图,Bob为了向Alice证明自己是Bob和某个公钥是自己的,她便向一个Bob和Alice都信任的CA机构申请证书,Bob先自己生成了一对密钥对(私钥和公钥),把自己的私钥保存在自己电脑上,然后把公钥给CA申请证书,CA接受申请于是给Bob颁发了一个数字证书,证书中包含了Bob的那个公钥以及其它身份信息,当然,CA会计算这些信息的消息摘要并用自己的私钥加密消息摘要(数字签名)一并附在Bob的证书上,以此来证明这个证书就是CA自己颁发的。Alice得到Bob的证书后用CA的证书(自签署的)中的公钥来解密消息摘要,随后将摘要和Bob的公钥发送到CA服务器上进行核对。CA在接收到Alice的核对请求后,会根据Alice提供的信息核对Bob的证书是否合法,如果确认合法则回复Alice证书合法。Alice收到CA的确认回复后,再去使用从证书中获取的Bob的公钥加密邮件然后发送给Bob,Bob接收后再以自己的私钥进行解密。
用户密码加密方式
用户密码保存到数据库时,常见的加密方式有哪些?以下几种方式是常见的密码保存方式:
1. 明文保存
比如用户设置的密码是“123456”,直接将“123456”保存在数据库中,这种是最简单的保存方式,也是最不安全的方式。但实际上不少互联网公司,都可能采取的是这种方式。
2. 对称加密算法来保存
比如3DES、aes等算法,使用这种方式加密是可以通过解密来还原出原始密码的,当然前提条件是需要获取到密钥。不过既然大量的用户信息已经泄露了,密钥很可能也会泄露,当然可以将一般数据和密钥分开存储、分开管理,但要完全保护好密钥也是一件非常复杂的事情,所以这种方式并不是很好的方式。
3. MD5、SHA1等单向HASH算法
使用这些算法后,无法通过计算还原出原始密码,而且实现比较简单,因此很多互联网公司都采用这种方式保存用户密码,曾经这种方式也是比较安全的方式,但随着彩虹表技术的兴起,可以建立彩虹表进行查表破解,目前这种方式已经很不安全了。
其实之前公司也是采用的这种MD5加密方式。
4. PBKDF2算法
该算法原理大致相当于在HASH算法基础上增加随机盐,并进行多次HASH运算,随机盐使得彩虹表的建表难度大幅增加,而多次HASH也使得建表和破解的难度都大幅增加。
在使用PBKDF2算法时,HASH一般会选用sha1或者sha256,随机盐的长度一般不能少于8字节,HASH次数至少也要1000次,这样安全性才足够高。一次密码验证过程进行1000次HASH运算,对服务器来说可能只需要1ms,但对于破解者来说计算成本增加了1000倍,而至少8字节随机盐,更是把建表难度提升了N个数量级,使得大批量的破解密码几乎不可行,该算法也是美国国家标准与技术研究院推荐使用的算法。
5. bcrypt、scrypt等算法
这两种算法也可以有效抵御彩虹表,使用这两种算法时也需要 指定 相应的参数,使破解难度增加。
在密码学中,scrypt(念作“ess crypt”)是Colin Percival于2009年所发明的金钥推衍函数,当初设计用在他所创立的Tarsnap服务上。设计时考虑到大规模的客制硬件攻击而刻意设计需要大量内存运算。
Scrypt不仅计算所需时间长,而且占用的内存也多,使得并行计算多个摘要异常困难,因此利 用rainbow table进行暴力攻击更加困难。Scrypt 没有在生产环境中大规模应用,并且缺乏仔细的审察和广泛的函数库支持。但是,Scrypt 在算法层面只要没有破绽,它的安全性应该高于PBKDF2和bcrypt。
各个算法的特性
总结
采用PBKDF2、bcrypt、scrypt等算法可以有效抵御彩虹表攻击,即使数据泄露,最关键的“用户密码”仍然可以得到有效的保护,黑客无法大批量破解用户密码,从而切断撞库扫号的根源。
【加密软件编辑推荐】
易控网盾加密软件--重要文件防泄密专家!轻松实现单位内部文件自动加密保护,加密后的文件在单位内部正常流转使用。未经许可,任何私自拷贝加密文件外发出去,都将打开为乱码,无法使用!对于发送给客户等第三方的文件,可实现控制打开时间和打开次数等防泄密参数!同时可设置对员工电脑文件自动备份,防止恶意删除造成核心数据的遗失!从源头防止企业核心文件被外泄!
相关页面:加密软件,文件加密,文档加密,图纸加密软件,防泄密软件,CAD加密软件,文件外发加密
数字加密方法:将该数每一位上的数字加9,然后除以10取余,做为该位上的新数字,最后将第1位和第3位上的数字互换,第2位和第4位上的数字互换,组成加密后的新数。
数据加密算法是一种对称加密算法,是使用最广泛的密钥系统,特别是在保护金融数据的安全中;密码算法是加密算法和解密算法的统称,它是密码体制的核心,密码算法可以看成一些交换的组合,当输入为明文时,经过这些变换,输出就为密文,此过程为加密算法。
数字加密标准(DES)
对每个64位的数据块采用56位密钥。加密的过程可以用若干种模式进行操作包括16次循环或操作。虽然它被认为是“强”加密,许多公司使用三个密钥,“三重数字加密标准(DES)”。这并不是说,DES加密信息不能被破解。早在1997年,另一个加密方法公钥加密算法(Rivest-Shamir-Adleman)的拥有人悬赏一万美元来破解数字加密标准信息。
在安全领域,利用密钥加密算法来对通信的过程进行加密是一种常见的安全手段。利用该手段能够保障数据安全通信的三个目标:
而常见的密钥加密算法类型大体可以分为三类:对称加密、非对称加密、单向加密。下面我们来了解下相关的算法原理及其常见的算法。
在加密传输中最初是采用对称密钥方式,也就是加密和解密都用相同的密钥。
1.对称加密算法采用单密钥加密,在通信过程中,数据发送方将原始数据分割成固定大小的块,经过密钥和加密算法逐个加密后,发送给接收方
2.接收方收到加密后的报文后,结合解密算法使用相同密钥解密组合后得出原始数据。
图示:
非对称加密算法采用公钥和私钥两种不同的密码来进行加解密。公钥和私钥是成对存在,公钥是从私钥中提取产生公开给所有人的,如果使用公钥对数据进行加密,那么只有对应的私钥(不能公开)才能解密,反之亦然。N 个用户通信,需要2N个密钥。
非对称密钥加密适合对密钥或身份信息等敏感信息加密,从而在安全性上满足用户的需求。
1.甲使用乙的公钥并结合相应的非对称算法将明文加密后发送给乙,并将密文发送给乙。
2.乙收到密文后,结合自己的私钥和非对称算法解密得到明文,得到最初的明文。
图示:
单向加密算法只能用于对数据的加密,无法被解密,其特点为定长输出、雪崩效应(少量消息位的变化会引起信息摘要的许多位变化)。
单向加密算法常用于提取数据指纹,验证数据的完整性、数字摘要、数字签名等等。
1.发送者将明文通过单向加密算法加密生成定长的密文串,然后传递给接收方。
2.接收方将用于比对验证的明文使用相同的单向加密算法进行加密,得出加密后的密文串。
3.将之与发送者发送过来的密文串进行对比,若发送前和发送后的密文串相一致,则说明传输过程中数据没有损坏;若不一致,说明传输过程中数据丢失了。
图示:
MD5、sha1、sha224等等
密钥交换IKE(Internet Key Exchange)通常是指双方通过交换密钥来实现数据加密和解密
常见的密钥交换方式有下面两种:
将公钥加密后通过网络传输到对方进行解密,这种方式缺点在于具有很大的可能性被拦截破解,因此不常用
DH算法是一种密钥交换算法,其既不用于加密,也不产生数字签名。
DH算法通过双方共有的参数、私有参数和算法信息来进行加密,然后双方将计算后的结果进行交换,交换完成后再和属于自己私有的参数进行特殊算法,经过双方计算后的结果是相同的,此结果即为密钥。
如:
安全性
在整个过程中,第三方人员只能获取p、g两个值,AB双方交换的是计算后的结果,因此这种方式是很安全的。
答案:使用公钥证书
公钥基础设施是一个包括硬件、软件、人员、策略和规程的集合
用于实现基于公钥密码机制的密钥和证书的生成、管理、存储、分发和撤销的功能
签证机构CA、注册机构RA、证书吊销列表CRL和证书存取库CB。
公钥证书是以数字签名的方式声明,它将公钥的值绑定到持有对应私钥的个人、设备或服务身份。公钥证书的生成遵循X.509协议的规定,其内容包括:证书名称、证书版本、序列号、算法标识、颁发者、有效期、有效起始日期、有效终止日期、公钥 、证书签名等等的内容。
1.客户A准备好要传送的数字信息(明文)。(准备明文)
2.客户A对数字信息进行哈希(hash)运算,得到一个信息摘要。(准备摘要)
3.客户A用CA的私钥(SK)对信息摘要进行加密得到客户A的数字签名,并将其附在数字信息上。(用私钥对数字信息进行数字签名)
4.客户A随机产生一个加密密钥(DES密钥),并用此密钥对要发送的信息进行加密,形成密文。 (生成密文)
5.客户A用双方共有的公钥(PK)对刚才随机产生的加密密钥进行加密,将加密后的DES密钥连同密文一起传送给乙。(非对称加密,用公钥对DES密钥进行加密)
6.银行B收到客户A传送过来的密文和加过密的DES密钥,先用自己的私钥(SK)对加密的DES密钥进行解密,得到DES密钥。(用私钥对DES密钥解密)
7.银行B然后用DES密钥对收到的密文进行解密,得到明文的数字信息,然后将DES密钥抛弃(即DES密钥作废)。(解密文)
8.银行B用双方共有的公钥(PK)对客户A的数字签名进行解密,得到信息摘要。银行B用相同的hash算法对收到的明文再进行一次hash运算,得到一个新的信息摘要。(用公钥解密数字签名)
9.银行B将收到的信息摘要和新产生的信息摘要进行比较,如果一致,说明收到的信息没有被修改过。(对比信息摘要和信息)
答案是没法保证CA的公钥没有被篡改。通常操作系统和浏览器会预制一些CA证书在本地。所以发送方应该去那些通过认证的CA处申请数字证书。这样是有保障的。
但是如果系统中被插入了恶意的CA证书,依然可以通过假冒的数字证书发送假冒的发送方公钥来验证假冒的正文信息。所以安全的前提是系统中不能被人插入非法的CA证书。
END
智能化时代的到来涉及了各种核心算法,保护算法就能保障开发者权益,杜绝市面上各种山寨品,加密芯片恰好能起到很好的保护作用,如何选择加密芯片呢?KEROS加密芯片专注于加密领域十余年,行业首选。
1.安全性:采用国际通用aes256算法加密并同时通过KAS传送,除基本认证之外,利用2K安全EEPROM,用户可以自己管理密钥和数据,实现双重保护。
2.唯一性:以定制的方式为每一位用户单独定制“专属型号CID”,多用户之间算法不兼容,并且采用固化的方法直接将算法固化到晶圆上而无需烧入。
3.序列号:每颗芯片制造生产时具有5字节全球唯一SN序列号,每颗芯片SN都不会重复。
4.防抄特性:每颗芯片都有自己独特的密钥系统,破解单颗芯片只对这颗芯片对应的产品有效,对整个同类型的产品是无效的,依旧无法通过验证。而且KEROS采用ASIC方法设计,芯片内为纯逻辑电路,封装内有40多层逻辑电路整合了10万多个逻辑门,爆力刨片破解难度可想而知。
5.安全存储:用户可以将保密数据加密之后安全的存放到EEPROM中。加密算法的方法的介绍就聊到这里吧,感谢你花时间阅读本站内容。