173 2438 5004
KEROS加密芯片——品牌直销 | 免费样品 | 技术支持
当前位置:网站首页 > 资讯中心 正文 资讯中心

非对称加密技术的数学思维原理

keros@mark 2022-11-07 资讯中心

本文目录一览

非对称加密技术体现了什么样的数学思维和工程思维??

大概理解楼主的意思,但是我想说这种体验难道非得需要大神才会有吗?我以为多数人在多数情况下不应该都是通过思考解数学题的么?难道我想错了?我从小就不多做题目练习,遇到任何数学题基本都是当做全新的题目来想的,很少联想以往做过的题目套路,多数从条件推理下去或者从结果倒推自然就成了,所谓难题就是推理逻辑链条比较长,推理过程中稍一分心容易混乱而已。只不过到了高二以后才发现这样干比较费时间,考场上会来不及,这才不得不开始上题海战术摸索套路经验。

但是物理题我是一直这么干的,因为数学题相对物理题细节性的技巧更多,所谓更tricky,推理过程中不少地方你独立思考还真得有几分运气,但是物理题这种请况就少得多,所以我学生时代一直很少做物理题,甚至连课内作业也不太做,每道题都是从头思考,但考试也还不错。

要说体验么,多数题目是看完条件有种“一眼就望到头”的感觉,就是知道从这个方向推理下去一定就是答案,大概因为这种题逻辑链条单一,也比较短。

稍难一些的,往往条件较多,看上去逻辑链条有些分叉,一眼之下看不出着手指出,但是仍然有种“这些条件要推出结论肯定是充分的”感觉,所以并不慌。从条件开始或从需要的结论逆推,把每个可能的逻辑链条和分叉都走一遍,也很快就能得出结论。大概是这种题虽然逻辑链有些分叉,但比较短,有条理有规律地穷举也很快。

高中时给我最大麻烦的就是数学难题,这类题不但条件多逻辑链分叉多,而且每条逻辑链路都比较长。刚开始我仍然用上面一段的办法对付。结果确实做出了不少,但是花费很长时间,因为逻辑链分叉又多又长,穷举起来很慢,往往从一个方向开始推理时,完全看不到这条链路的头,推了很久才发现是个死胡同,只能回溯到上一个分叉换一个方向,虽然勉强能做,但很耗时间,更要命的是有些逻辑支路很隐蔽,没人告诉你就只能靠运气发现。比如若有印象可以回一下圆锥曲线类计算题,如果不套用以往经验全靠自己思考还是比较痛苦的,例如这种题代出一个有参数的二次方程之后往往是不需要直接解的,用根判别式或者韦达定理就够了,但是我一开始自己想的时候肯定是从最直接的解方程思路去做,结果越做越烦,终于算不下去了(其实可以做出来,但是太烦了),才放弃解方程,从解方程之前重新想,然后还真想到用根判别式做。那是我刚开始接触这类题,当时就感觉,这题居然需要用这么tricky的办法,幸亏我运气好居然想到了。后来才明白,几乎多数数学大题都这样。。。

什么是非对称加密技术

非对称加密算法是一种密钥的保密方法。

在对称加密中加密和解密过程用的是同一把钥匙,而非对称加密中加密和解密过程用的是一对密钥,这对密钥分别称为“公钥”和“私钥”。因为使用的是两个不同的密钥,所以这种算法叫作非对称加密算法。

简要说说对称加密和非对称加密的原理以及区别是什么

对称加密的原理是数据发送方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。接收方收到密文后,若想解读原文,则需要使用加密密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。

非对称加密的原理是甲方首先生成一对密钥同时将其中的一把作为公开密钥;得到公开密钥的乙方再使用该密钥对需要加密的信息进行加密后再发送给甲方;甲方再使用另一把对应的私有密钥对加密后的信息进行解密,这样就实现了机密数据传输。

对称加密和非对称加密的区别为:密钥不同、安全性不同、数字签名不同。

一、密钥不同

1、对称加密:对称加密加密和解密使用同一个密钥。

2、非对称加密:非对称加密加密和解密所使用的不是同一个密钥,需要两个密钥来进行加密和解密。

二、安全性不同

1、对称加密:对称加密如果用于通过网络传输加密文件,那么不管使用任何方法将密钥告诉对方,都有可能被窃听。

2、非对称加密:非对称加密因为它包含有两个密钥,且仅有其中的“公钥”是可以被公开的,接收方只需要使用自己已持有的私钥进行解密,这样就可以很好的避免密钥在传输过程中产生的安全问题。

三、数字签名不同

1、对称加密:对称加密不可以用于数字签名和数字鉴别。

2、非对称加密:非对称加密可以用于数字签名和数字鉴别。

密码学基础(三):非对称加密(RSA算法原理)

加密和解密使用的是两个不同的秘钥,这种算法叫做非对称加密。非对称加密又称为公钥加密,RSA只是公钥加密的一种。

现实生活中有签名,互联网中也存在签名。签名的作用有两个,一个是身份验证,一个是数据完整性验证。数字签名通过摘要算法来确保接收到的数据没有被篡改,再通过签名者的私钥加密,只能使用对应的公钥解密,以此来保证身份的一致性。

数字证书是将个人信息和数字签名放到一起,经由CA机构的私钥加密之后生成。当然,不经过CA机构,由自己完成签名的证书称为自签名证书。CA机构作为互联网密码体系中的基础机构,拥有相当高级的安全防范能力,所有的证书体系中的基本假设或者前提就是CA机构的私钥不被窃取,一旦 CA J机构出事,整个信息链将不再安全。

CA证书的生成过程如下:

证书参与信息传递完成加密和解密的过程如下:

互质关系:互质是公约数只有1的两个整数,1和1互质,13和13就不互质了。

欧拉函数:表示任意给定正整数 n,在小于等于n的正整数之中,有多少个与 n 构成互质关系,其表达式为:

其中,若P为质数,则其表达式可以简写为:

情况一:φ(1)=1

1和任何数都互质,所以φ(1)=1;

情况二:n 是质数, φ(n)=n-1

因为 n 是质数,所以和小于自己的所有数都是互质关系,所以φ(n)=n-1;

情况三:如果 n 是质数的某一个次方,即 n = p^k ( p 为质数,k 为大于等于1的整数),则φ(n)=(p-1)p^(k-1)

因为 p 为质数,所以除了 p 的倍数之外,小于 n 的所有数都是 n 的质数;

情况四:如果 n 可以分解成两个互质的整数之积,n = p1 × p2,则φ(n) = φ(p1p2) = φ(p1)φ(p2)

情况五:基于情况四,如果 p1 和 p2 都是质数,且 n=p1 × p2,则φ(n) = φ(p1p2) = φ(p1)φ(p2)=(p1-1)(p2-1)

而 RSA 算法的基本原理就是欧拉函数中的第五种情况,即: φ(n)=(p1-1)(p2-1);

如果两个正整数 a 和 n 互质,那么一定可以找到整数 b,使得 ab-1 被 n 整除,或者说ab被n除的余数是1。这时,b就叫做a的“模反元素”。欧拉定理可以用来证明模反元素必然存在。

可以看到,a的 φ(n)-1 次方,就是a对模数n的模反元素。

n=p x q = 3233,3233写成二进制是110010100001,一共有12位,所以这个密钥就是12位。

在实际使用中,一般场景下选择1024位长度的数字,更高安全要求的场景下,选择2048位的数字,这里作为演示,选取p=61和q=53;

因为n、p、q都为质数,所以φ(n) = (p-1)(q-1)=60×52= 3120

注意,这里是和φ(n) 互互质而不是n!假设选择的值是17,即 e=17;

模反元素就是指有一个整数 d,可以使得 ed 被 φ(n) 除的余数为1。表示为:(ed-1)=φ(n) y -- 17d=3120y+1,算出一组解为(2753,15),即 d=2753,y=-15,也就是(17 2753-1)/3120=15。

注意,这里不能选择3119,否则公私钥相同??

公钥:(n,e)=(3233,2753)

私钥:(n,d)=(3233,17)

公钥是公开的,也就是说m=p*q=3233是公开的,那么怎么求e被?e是通过模反函数求得,17d=3120y+1,e是公开的等于17,这时候想要求d就要知道3120,也就是φ(n),也就是φ(3233),说白了,3233是公开的,你能对3233进行因数分解,你就能知道d,也就能破解私钥。

正常情况下,3233我们可以因数分解为61*53,但是对于很大的数字,人类只能通过枚举的方法来因数分解,所以RSA安全性的本质就是:对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。

人类已经分解的最大整数是:

这个人类已经分解的最大整数为232个十进制位,768个二进制位,比它更大的因数分解,还没有被报道过,因此目前被破解的最长RSA密钥就是768位。所以实际使用中的1024位秘钥基本安全,2048位秘钥绝对安全。

网上有个段子:

已经得出公私钥的组成:

公钥:(n,e)=(3233,2753)

私钥:(n,d)=(3233,17)

加密的过程就是

解密过程如下:

其中 m 是要被加密的数字,c 是加密之后输出的结果,且 m n ,其中解密过程一定成立可以证明的,这里省略证明过程。

总而言之,RSA的加密就是使用模反函数对数字进行加密和求解过程,在实际使用中因为 m n必须成立,所以就有两种加密方法:

对称加密存在虽然快速,但是存在致命的缺点就是秘钥需要传递。非对称加密虽然不需要传递秘钥就可以完成加密和解密,但是其致命缺点是速度不够快,不能用于高频率,高容量的加密场景。所以才有了两者的互补关系,在传递对称加密的秘钥时采用非对称加密,完成秘钥传送之后采用对称加密,如此就可以完美互补。

随着社会的发展,产品的更新速度也是越来越快,算法是方案的核心,保护开发者和消费者的权益刻不容缓,那么加密芯片在其中就扮演了重要的角色,如何选择加密芯片呢?
1.市面上加密芯片种类繁多,算法多种,加密芯片强度参差不齐,加密性能与算法、秘钥密切相关。常见的加密算法有对称算法,非对称算法,国密算法,大部分都是基于I2C、SPI或1-wire协议进行通信。加密芯片还是需要项目实际需求选择,比如对称加密算法的特点是计算量小、加密速度快、加密效率高等。
2.因为单片机软加密性能较弱且非常容易被复制,所以有了加密芯片的产生,大大增加了破解难度和生产成本。目前加密芯片广泛应用于车载电子、消费电子、美容医疗、工业控制、AI智能等行业。
3.韩国KEROS加密芯片专注加密领域十多年,高安全性、低成本,在加密保护领域受到了众多客户的高度赞扬及认可。KEROS采用先进的内置aes256安全引擎和加密功能,通过真动态数据交互并为系统中敏感信息的存储提供了安全的场所,有了它的保护电路,即使受到攻击,这些信息也可以保持安全。其封装SOP8,SOT23-6,TDFN-6集成I2C与1-wire协议满足不同应用需求。CK02AT、CK22AT、CK02AP、CK22AP支持1.8V-3.6V,256bit位秘钥长度,5bytes SN序列号,支持定制化免烧录,加密行业首选。关于非对称加密技术的数学思维原理的介绍到此就结束了,感谢大家耐心阅读。

产品列表
产品封装
友情链接