加密的原因:保证数据安全
加密必备要素:1、明文/密文 2、秘钥 3、算法
秘钥:在密码学中是一个定长的字符串、需要根据加密算法确定其长度
加密算法解密算法一般互逆、也可能相同
常用的两种加密方式:
对称加密:秘钥:加密解密使用同一个密钥、数据的机密性双向保证、加密效率高、适合加密于大数据大文件、加密强度不高(相对于非对称加密)
非对称加密:秘钥:加密解密使用的不同秘钥、有两个密钥、需要使用密钥生成算法生成两个秘钥、数据的机密性只能单向加密、如果想解决这个问题、双向都需要各自有一对秘钥、加密效率低、加密强度高
公钥:可以公开出来的密钥、公钥加密私钥解密
私钥:需要自己妥善保管、不能公开、私钥加密公钥解密
安全程度高:多次加密
按位异或运算
凯撒密码:加密方式 通过将铭文所使用的字母表按照一定的字数平移来进行加密
mod:取余
加密三要素:明文/密文(字母)、秘钥(3)、算法(向右平移3/-3)
安全常识:不要使用自己研发的算法、不要钻牛角尖、没必要研究底层实现、了解怎么应用;低强度的密码比不进行任何加密更危险;任何密码都会被破解;密码只是信息安全的一部分
保证数据的机密性、完整性、认证、不可否认性
计算机操作对象不是文字、而是由0或1排列而成的比特序列、程序存储在磁盘是二进制的字符串、为比特序列、将现实的东西映射为比特序列的操作称为编码、加密又称之为编码、解密称之为解码、根据ASCII对照表找到对应的数字、转换成二进制
三种对称加密算法:DES\3DES\ aes
DES:已经被破解、除了用它来解密以前的明文、不再使用
密钥长度为56bit/8、为7byte、每隔7个bit会设置一个用于错误检查的比特、因此实际上是64bit
分组密码(以组为单位进行处理):加密时是按照一个单位进行加密(8个字节/64bit为一组)、每一组结合秘钥通过加密算法得到密文、加密后的长度不变
3DES:三重DES为了增加DES的强度、将DES重复三次所得到的一种加密算法 密钥长度24byte、分成三份 加密--解密--加密 目的:为了兼容DES、秘钥1秘钥2相同==三个秘钥相同 ---加密一次 密钥1秘钥3相同--加密三次 三个密钥不相同最好、此时解密相当于加密、中间的一次解密是为了有三个密钥相同的情况
此时的解密操作与加密操作互逆,安全、效率低
数据先解密后加密可以么?可以、解密相当于加密、加密解密说的是算法
aes:(首选推荐)底层算法为Rijndael 分组长度为128bit、密钥长度为128bit到256bit范围内就可以 但是在aes中、密钥长度只有128bit\192bit\256bit 在go提供的接口中、只能是16字节(128bit)、其他语言中秘钥可以选择
目前为止最安全的、效率高
底层算法
分组密码的模式:
按位异或、对数据进行位运算、先将数据转换成二进制、按位异或操作符^、相同为真、不同为假、非0为假 按位异或一次为加密操作、按位异或两次为解密操作:a和b按位异或一次、结果再和b按位异或
ECB : 如果明文有规律、加密后的密文有规律不安全、go里不提供该接口、明文分组分成固定大小的块、如果最后一个分组不满足分组长度、则需要补位
CBC:密码链
问题:如何对字符串进行按位异或?解决了ECB的规律可查缺点、但是他不能并行处理、最后一个明文分组也需要填充 、初始化向量长度与分组长度相同
CFB:密文反馈模式
不需要填充最后一个分组、对密文进行加密
OFB:
不需要对最后一组进行填充
CTR计数器:
不需要对最后一组进行填充、不需要初始化向量
Go中的实现
官方文档中:
在创建aes或者是des接口时都是调用如下的方法、返回的block为一个接口
func NewCipher(key [] byte ) ( cipher . Block , error )
type Block interface {
// 返回加密字节块的大小
BlockSize() int
// 加密src的第一块数据并写入dst,src和dst可指向同一内存地址
Encrypt(dst, src []byte)
// 解密src的第一块数据并写入dst,src和dst可指向同一内存地址
Decrypt(dst, src []byte)
}
Block接口代表一个使用特定密钥的底层块加/解密器。它提供了加密和解密独立数据块的能力。
Block的Encrypt/Decrypt也能进行加密、但是只能加密第一组、因为aes的密钥长度为16、所以进行操作的第一组数据长度也是16
如果分组模式选择的是cbc
func NewCBCEncrypter(b Block, iv []byte) BlockMode 加密
func NewCBCDecrypter(b Block, iv []byte) BlockMode 解密
加密解密都调用同一个方法CryptBlocks()
并且cbc分组模式都会遇到明文最后一个分组的补充、所以会用到加密字节的大小
返回一个密码分组链接模式的、底层用b加密的BlockMode接口,初始向量iv的长度必须等于b的块尺寸。iv自己定义
返回的BlockMode同样也是一个接口类型
type BlockMode interface {
// 返回加密字节块的大小
BlockSize() int
// 加密或解密连续的数据块,src的尺寸必须是块大小的整数倍,src和dst可指向同一内存地址
CryptBlocks(dst, src []byte)
}
BlockMode接口代表一个工作在块模式(如CBC、ECB等)的加/解密器
返回的BlockMode其实是一个cbc的指针类型中的b和iv
# 加密流程:
1. 创建一个底层使用des/3des/aes的密码接口 "crypto/des" func NewCipher(key []byte) (cipher.Block, error) # -- des func NewTripleDESCipher(key []byte) (cipher.Block, error) # -- 3des "crypto/aes" func NewCipher(key []byte) (cipher.Block, error) # == aes
2. 如果使用的是cbc/ecb分组模式需要对明文分组进行填充
3. 创建一个密码分组模式的接口对象 - cbc func NewCBCEncrypter(b Block, iv []byte) BlockMode # 加密 - cfb func NewCFBEncrypter(block Block, iv []byte) Stream # 加密 - ofb - ctr
4. 加密, 得到密文
流程:
填充明文:
先求出最后一组中的字节数、创建新切片、长度为新切片、值也为切片的长度、然后利用bytes.Reapet将长度换成字节切片、追加到原明文中
//明文补充
func padPlaintText(plaintText []byte,blockSize int)[]byte{
//1、求出需要填充的个数
padNum := blockSize-len(plaintText) % blockSize
//2、对填充的个数进行操作、与原明文进行合并
newPadding := []byte{byte(padNum)}
newPlain := bytes.Repeat(newPadding,padNum)
plaintText = append(plaintText,newPlain...)
return plaintText
}
去掉填充数据:
拿去切片中的最后一个字节、得到尾部填充的字节个数、截取返回
//解密后的明文曲调补充的地方
func createPlaintText(plaintText []byte,blockSize int)[]byte{
//1、得到最后一个字节、并将字节转换成数字、去掉明文中此数字大小的字节
padNum := int(plaintText[len(plaintText)-1])
newPadding := plaintText[:len(plaintText)-padNum]
return newPadding
}
des加密:
1、创建一个底层使用des的密码接口、参数为秘钥、返回一个接口
2、对明文进行填充
3、创建一个cbc模式的接口、需要创建iv初始化向量、返回一个blockmode对象
4、加密、调用blockmode中的cryptBlock函数进行加密、参数为目标参数和源参数
//des利用分组模式cbc进行加密
func EncryptoText(plaintText []byte,key []byte)[]byte{
//1、创建des对象
cipherBlock,err := des.NewCipher(key)
if err != nil {
panic(err)
}
//2、对明文进行填充
newText := padPlaintText(plaintText,cipherBlock.BlockSize())
//3、选择分组模式、其中向量的长度必须与分组长度相同
iv := make([]byte,cipherBlock.BlockSize())
blockMode := cipher.NewCBCEncrypter(cipherBlock,iv)
//4、加密
blockMode.CryptBlocks(newText,newText)
return newText
}
des解密:
1、创建一个底层使用des的密码接口、参数为秘钥、返回一个接口
2、创建一个cbc模式的接口、需要创建iv初始化向量,返回一个blockmode对象
3、加密、调用blockmode中的cryptBlock函数进行解密、参数为目标参数和源参数
4、调用去掉填充数据的方法
//des利用分组模式cbc进行解密
func DecryptoText(cipherText []byte, key []byte)[]byte{
//1、创建des对象
cipherBlock,err := des.NewCipher(key)
if err != nil {
panic(err)
}
//2、创建cbc分组模式接口
iv := []byte("12345678")
blockMode := cipher.NewCBCDecrypter(cipherBlock,iv)
//3、解密
blockMode.CryptBlocks(cipherText,cipherText)
//4、将解密后的数据进行去除填充的数据
newText := clearPlaintText(cipherText,cipherBlock.BlockSize())
return newText
}
Main函数调用
func main(){
//需要进行加密的明文
plaintText := []byte("CBC--密文没有规律、经常使用的加密方式,最后一个分组需要填充,需要初始化向量" +
"(一个数组、数组的长度与明文分组相等、数据来源:负责加密的人提供,加解密使用的初始化向量必须相同)")
//密钥Key的长度需要与分组长度相同、且加密解密的密钥相同
key := []byte("1234abcd")
//调用加密函数
cipherText := EncryptoText(plaintText,key)
newPlaintText := DecryptoText(cipherText,key)
fmt.Println(string(newPlaintText))
}
aes加密解密相同、所以只需要调用一次方法就可以加密、调用两次则解密
推荐是用分组模式:cbc、ctr
aes利用分组模式cbc进行加密
//对明文进行补充
func paddingPlaintText(plaintText []byte , blockSize int ) []byte {
//1、求出分组余数
padNum := blockSize - len(plaintText) % blockSize
//2、将余数转换为字节切片、然后利用bytes.Repeat得出有该余数的大小的字节切片
padByte := bytes.Repeat([]byte{byte(padNum)},padNum)
//3、将补充的字节切片添加到原明文中
plaintText = append(plaintText,padByte...)
return plaintText
}
//aes加密
func encryptionText(plaintText []byte, key []byte) []byte {
//1、创建aes对象
block,err := aes.NewCipher(key)
if err != nil {
panic(err)
}
//2、明文补充
newText := paddingPlaintText(plaintText,block.BlockSize())
//3、创建cbc对象
iv := []byte("12345678abcdefgh")
blockMode := cipher.NewCBCEncrypter(block,iv)
//4、加密
blockMode.CryptBlocks(newText,newText)
return newText
}
//解密后的去尾
func clearplaintText(plaintText []byte, blockSize int) []byte {
//1、得到最后一个字节、并转换成整型数据
padNum := int(plaintText[len(plaintText)-1])
//2、截取明文字节中去掉得到的整型数据之前的数据、此处出错、没有用len-padNum
newText := plaintText[:len(plaintText)-padNum]
return newText
}
//aes解密
func deCryptionText(crypherText []byte, key []byte ) []byte {
//1、创建aes对象
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
//2、创建cbc对象
iv := []byte("12345678abcdefgh")
blockMode := cipher.NewCBCDecrypter(block,iv)
//3、解密
blockMode.CryptBlocks(crypherText,crypherText)
//4、去尾
newText := clearplaintText(crypherText,block.BlockSize())
return newText
}
func main(){
//需要进行加密的明文
plaintText := []byte("CBC--密文没有规律、经常使用的加密方式,最后一个分组需要填充,需要初始化向量")
//密钥Key的长度需要与分组长度相同、且加密解密的密钥相同
key := []byte("12345678abcdefgh")
//调用加密函数
cipherText := encryptionText(plaintText,key)
//调用解密函数
newPlaintText := deCryptionText(cipherText,key)
fmt.Println("解密后",string(newPlaintText))
}
//aes--ctr加密
func encryptionCtrText(plaintText []byte, key []byte) []byte {
//1、创建aes对象
block,err := aes.NewCipher(key)
if err != nil {
panic(err)
}
//2、创建ctr对象,虽然ctr模式不需要iv,但是go中使用ctr时还是需要iv
iv := []byte("12345678abcdefgh")
stream := cipher.NewCTR(block,iv)
stream.XORKeyStream(plaintText,plaintText)
return plaintText
}
func main() {
//aes--ctr加密解密、调用两次即为解密、因为加密解密函数相同stream.XORKeyStream
ctrcipherText := encryptionCtrText(plaintText, key)
ctrPlaintText := encryptionCtrText(ctrcipherText,key)
fmt.Println("aes解密后", string(ctrPlaintText))
}
英文单词:
明文:plaintext 密文:ciphertext 填充:padding/fill 去掉clear 加密Encryption 解密Decryption
密钥生成可以通过在线或离线的交互协商方式实现,如密码协议等。密钥分发采用对称加密算法进行保密通信,需要共享同一密钥。
通信,指人与人或人与自然之间通过某种行为或媒介进行的信息交流与传递,从广义上指需要信息的双方或多方在不违背各自意愿的情况下采用任意方法、任意媒质,将信息从某方准确安全地传送到另方。
互通音信。《晋书·王澄传》:因下牀而谓澄曰:何与杜弢通信,唐 李德裕 《代刘沔与回鹘宰相书意》:又恐回鹘与吐蕃通信,已令兵马把断三河口道路。
通报消息。《初刻拍案惊奇》卷五:“那裴仆射家拣定了做亲日期,叫媒人到张尚书家来通信。”《九命奇冤》第十八回:“哪一个不受过侄老爹大恩,谁还去通信呢?”今指用电讯设备或用书信传递消息,反映情况。
燕谷老人 《续孽海花》第五三回:“华福又奏明请颁一种密电本,以便秘密通信。” 曹禺 《北京人》第三幕:“以后我们可以常通信的。”《人民日报》1982.12.5:中华人民共和国公民的通信自由和通信秘密受法律的保护。
报道消息的文章。 鲁迅 《南腔北调集·又论“第三种人”》:“我现在要说的,不过那通信里的必须指出的几点。” 徐铸成 《报海旧闻》十六:“《大公报》先后刊登农村调查通信、旅行通信、旅行写生以及由长江同志主持的战地通信。
指的就是加、解密使用的同是一串密钥,所以被称做对称加密。对称加密只有一个密钥作为私钥。 常见的对称加密算法:DES,aes等。
指的是加、解密使用不同的密钥,一把作为公开的公钥,另一把作为私钥。公钥加密的信息,只有私钥才能解密。反之,私钥加密的信息,只有公钥才能解密。 举个例子,你向某公司服务器请求公钥,服务器将公钥发给你,你使用公钥对消息加密,那么只有私钥的持有人才能对你的消息解密。与对称加密不同的是,公司服务器不需要将私钥通过网络发送出去,因此安全性大大提高。最常用的非对称加密算法:
对称加密相比非对称加密算法来说,加解密的效率要高得多、加密速度快。但是缺陷在于对于密钥的管理和分发上比较困难,不是非常安全,密钥管理负担很重。
安全性更高,公钥是公开的,密钥是自己保存的,不需要将私钥给别人。缺点:加密和解密花费时间长、速度慢,只适合对少量数据进行加密。
安全肯定是非对称加密安全,但是效率比较慢,对称加密效率高,但是不安全。严谨一点的做法是混合起来使用,将对称加密的密钥使用非对称加密的公钥进行加密,然后发送出去,接收方使用私钥进行解密得到对称加密的密钥,然后双方可以使用对称加密来进行沟通。实际工作中直接使用非对称加、解密其实也可以,因为我们平时一般请求的报文不会很大,加解密起来速度在可接受范围内,或者可以对敏感字段,比如密码、手机号、身份证号等进行分段加密,效率还可以。
加密方式的种类:
1、MD5
一种被广泛使用的密码散列函数,可以产生出一个128位(16字节)的散列值(hash value),用于确保信息传输完整一致。MD5由美国密码学家罗纳德·李维斯特(Ronald Linn Rivest)设计,于1992年公开,用以取代MD4算法。这套算法的程序在 RFC 1321 标准中被加以规范。
2、对称加密
对称加密采用单钥密码系统的加密方法,同一个密钥可以同时用作信息的加密和解密,这种加密方法称为对称加密,也称为单密钥加密。
3、非对称加密
与对称加密算法不同,非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥(privatekey)。公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密。
如果用私有密钥对数据进行加密,那么只有用对应的公开密钥才能解密。因为加密和解密使用的是两个不同的密钥,所以这种算法叫作非对称加密算法。
扩展资料
非对称加密工作过程
1、乙方生成一对密钥(公钥和私钥)并将公钥向其它方公开。
2、得到该公钥的甲方使用该密钥对机密信息进行加密后再发送给乙方。
3、乙方再用自己保存的另一把专用密钥(私钥)对加密后的信息进行解密。乙方只能用其专用密钥(私钥)解密由对应的公钥加密后的信息。
在传输过程中,即使攻击者截获了传输的密文,并得到了乙的公钥,也无法破解密文,因为只有乙的私钥才能解密密文。
同样,如果乙要回复加密信息给甲,那么需要甲先公布甲的公钥给乙用于加密,甲自己保存甲的私钥用于解密。
只有一个。这个也称为对称加密。加密与解密使用一个相同的秘钥。与其对应的说非对称加密,加解密使用不同的秘钥。
产品的开发快则一个月,慢则一年,那么如何杜绝市面上各种山寨也成为了我们必须要关注的问题,加密芯片可以做到这点,在保障开发者权益的同时也保护了消费者权益,KEROS加密芯片作为该领域的领头者,一直在尽力贡献一份力。特点如下:接口:标准I2C协议接口;算法: 标准aes256 / KAS算法;特殊接口:Random Stream Cipher for Interface;工作温度:工业级 -40℃ ~+85℃;频率:400Khz;存储:2K字节EEPROM(可选);电压:1.8V~3.6V;封装:SOT23-6,SOP8,TDFN-6。对称加密的密钥有几对的介绍就聊到这里吧,感谢你花时间阅读本站内容,谢谢。
本文标签:对称加密的密钥有几对