它是和对称加密相对应的。
对称加密是比较原始的加密手段,它的特点就是加密的密码和解密的密码是同一个,比如说压缩软件就是,即你在压缩包上加的密码是什么,解密的密码也必须是这个。很显然,对称加密的好处是简单快捷,坏处是保密性不佳,你得告诉对方这个密码才行,即中间必须存在一个双方交流密码的过程,这就产生了被人窃去的危险——别人要是窃去了这个密码,那信息也就暴露了。
非对称加密则是,想要加密一个文件,需要生出两个密码,一个公开密码,一个私人密码。比如说你想让对方给你发涉密文件,你就用非对称加密工具生出公私两个密码,然后把公开密码发给他,对方就用这个公开密码对要传来的文档进行加密,然后把这个用公开密码加密的文件发给你,你就可以用你的私人密码进行解密。对方或别人仅仅知道公开密码,无法就此逆推出私人密码,所以能够保证私人密码的安全性,也就保证了传输过程的保密性,涉密文件不会就此被人解密(别人偷去无用,因为没有私人密码,无法解开)。这就是非对称加密在涉密文件传输的应用。
如果把上边这个过程反过来,非对称加密则会实现另一种用途,电子签名。比如说你发了一份文件,别人怎么会知道这个文件就是你发的,而不是别人冒用你的身份发的呢?就算有你的亲笔签名,可架不住有笔迹摹仿高手呢。这种时候,你就可以用你的私有密码对这份公开的文件进行加密,然后再把公开密码随同公布。如果别人用你公布的公开密码能够对此文件进行解密,如此便可以就此验证出加密者就是你本人,它的安全性很高,其保密性比真正的笔迹更要安全。
非对称应用的这两个过程可以各简缩成四个字,就是传输涉密文件时,“公(用密码)加私(人密码)解”,电子签名(验明发文者正身)时,是“私(人密码)加公(开密码)解”。
可以看出,非对称加密的好处就是保密性好,因为中间不需要双方交流私人密码的过程——只需要交流公开密码,而这个公开密码第三方偷去了没用(无法就它推导出私人密码),不好处也很明显,就是过程相对复杂,解密效率不及对称式的。
嗯,非对称加密对比对称加密,还有一个明显的不同点,即加密者自己无法解密。对方得到公开密码后,用它对文件进行加密后,这个加密后的文件,对方虽然是生成者,可他自己也没法解密。这一点和对称加密截然不同。
所以,要是需要双方或多方交流重要、敏感的信息,还是用非对称加密为宜。但若是自个儿保密用的,或是文件密级不是那么高的,综合看来大概用对称加密更好。
如果要给世界上所有算法按重要程度排个序,那我觉得“公钥加密算法”一定是排在最前边的,因为它是现代计算机通信安全的基石,保证了加密数据的安全。
01 对称加密算法
在非对称加密出现以前,普遍使用的是对称加密算法。所谓对称加密,就是加密和解密是相反的操作,对数据进行解密,只要按加密的方式反向操作一遍就可以获得对应的原始数据了,举一个简单的例子,如果要对字符串"abc"进行加密,先获取它们的ANSCII码为:97 98 99;密钥为+2,加密后的数据就是:99 100 101,将密文数据发送出去。接收方收到数据后对数据进行解密,每个数据减2,就得到了原文。当然这只是一个非常简单的例子,真实的对称加密算法会做得非常复杂,但这已经能够说明问题了。
这样的加密方法有什么缺点呢?首先缺点一:密钥传递困难;想想看如果两个人,分别是Bob和Alice,Bob要给Alice发消息,那Bob就要把密钥通过某种方式告诉Alice,有什么可靠的途径呢?打电话、发邮件、写信...等等方式好像都不靠谱,都有被窃取的风险,也只有两人见面后当面交流这一种方式了;缺点二:密钥数量会随着通信人数的增加而急剧增加,密钥管理将会是一个非常困难的事情。
02 非对称加密算法
1976年,两位美国计算机学家,提出了Diffie-Hellman密钥交换算法。这个算法的提出了一种崭新的构思,可以在不直接传递密钥的情况下,完成解密。这个算法启发了其他科学家,让人们认识到,加密和解密可以使用不同的规则,只要这两种规则之间存在某种对应的关系即可,这样就避免了直接传递密钥。这种新的加密模式就是“非对称加密算法”。
算法大致过程是这样的:
(1)乙方 生成两把密钥(公钥和私钥)。公钥是公开的,任何人都可以获得,私钥则是保密的。
(2)甲方获取乙方的公钥,然后用它对信息加密。
(3)乙方得到加密后的信息,用私钥解密。
如果公钥加密的信息只有私钥解得开,那么只要私钥不泄漏,通信就是安全的。
03 RSA非对称加密算法
1977年,三位数学家Rivest、Shamir 和 Adleman 设计了一种算法,可以实现非对称加密。这种算法用他们三个人的名字命名,叫做RSA算法。
从那时直到现在,RSA算法一直是最广为使用的"非对称加密算法"。毫不夸张地说,只要有计算机网络的地方,就有RSA算法。这种算法非常可靠,密钥越长,它就越难破解。根据已经披露的文献,目前被破解的最长RSA密钥是768个二进制位。也就是说,长度超过768位的密钥,还无法破解(至少没人公开宣布)。因此可以认为,1024位的RSA密钥基本安全,2048位的密钥极其安全。
公钥加密 - 私钥解密
只有私钥持有方可以正确解密,保证通信安全
私钥加密 - 公钥解密
所有人都可以正确解密,信息一定是公钥所对应的私钥持有者发出的,可以做签名
04 质数的前置知识
RSA的安全性是由大数的质因数分解保证的。下面是一些质数的性质:
1、任意两个质数构成素质关系,比如:11和17;
2、一个数是质数,另一个数只要不是前者的倍数,两者就构成素质关系,比如3和10;
3、如果两个数之中,较大的那个是质数,则两者构成互质关系,比如97和57;
4、1和任意一个自然数都是互质关系,比如1和99;
5、p是大于1的整数,则p和p-1构成互质关系,比如57和56;
6、p是大于1的奇数,则p和p-2构成互质关系,比如17和15
05 RSA密钥生成步骤
举个“栗子“,假如通信双方为Alice和Bob,Alice要怎么生成公钥和私钥呢?
St ep 1:随机选择两个不相等的质数p和q;
Alice选择了3和11。(实际情况中,选择的越大,就越难破解)
S tep 2 :计算p和q的乘积n;
n = 3*11 = 33,将33转化为二进制:100001,这个时候密钥长度就是6位。
Step 3 :计算n的欧拉函数φ(n);
因为n可以写为两个质数相乘的形式,欧拉函数对于可以写成两个质数形式有简单计算方式
φ(n) = (p-1)(q-1)
Step 4 :随机选择一个整数e,条件是1 e φ(n),且e与φ(n) 互质;
爱丽丝就在1到20之间,随机选择了3
Step 5 :计算e对于φ(n)的模反元素d
所谓模反元素,就是指有一个整数d,可以使得ed被φ(n)除的余数为1
Step 6 :将n和e封装成公钥,n和d封装成私钥;
在上面的例子中,n=33,e=3,d=7,所以公钥就是 (33,3),私钥就是(33, 7)。
密钥生成步骤中,一共出现了六个数字,分别为:
素质的两个数p和q,乘积n,欧拉函数φ(n),随机质数e,模反元素d
这六个数字之中,公钥用到了两个(n和e),其余四个数字都是不公开的,可以删除。其中最关键的是d,因为n和d组成了私钥,一旦d泄漏,就等于私钥泄漏。
那么,有无可能在已知n和e的情况下,推导出d?
(1)ed 1 (mod φ(n))。只有知道e和φ(n),才能算出d。
(2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。
(3)n=pq。只有将n因数分解,才能算出p和q。
结论是如果n可以被因数分解,d就可以算出,也就意味着私钥被破解。
BUT!
大整数的因数分解,是一件非常困难的事情。目前,除了暴力破解,还没有发现别的有效方法。
维基百科这样写道:
"对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。
假如有人找到一种快速因数分解的算法,那么RSA的可靠性就会极度下降。但找到这样的算法的可能性是非常小的。今天只有较短的RSA密钥才可能被暴力破解。到现在为止,世界上还没有任何可靠的攻击RSA算法的方式。
只要密钥长度足够长,用RSA加密的信息实际上是不能被解破的。"
06 RSA加密和解密过程
1、加密要用公钥(n,e)
假设鲍勃要向爱丽丝发送加密信息m,他就要用爱丽丝的公钥 (n,e) 对m进行加密。
所谓"加密",就是算出下式的c:
爱丽丝的公钥是 (33, 3),鲍勃的m假设是5,那么可以算出下面的等式:
于是,c等于26,鲍勃就把26发给了爱丽丝。
2、解密要用私钥(n,d)
爱丽丝拿到鲍勃发来的26以后,就用自己的私钥(33, 7) 进行解密。下面的等式一定成立(至于为什么一定成立,证明过程比较复杂,略):
也就是说,c的d次方除以n的余数为m。现在,c等于26,私钥是(33, 7),那么,爱丽丝算出:
因此,爱丽丝知道了鲍勃加密前的原文就是5。
至此,加密和解密的整个过程全部完成。整个过程可以看到,加密和解密使用不用的密钥,且不用担心密钥传递过程中的泄密问题,这一点上与对称加密有很大的不同。由于非对称加密要进行的计算步骤复杂,所以通常情况下,是两种算法混合使用的。
07 一些其它的
在Part 5的第五步,要求一定要解出二元一次方程的一对正整数解,如果不存在正整数解,这该怎么办?
扩展欧几里得算法给出了解答:
对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by;
第五步其实等价于:ed - kφ(n) = 1, e与φ(n)又互质,形式上完全与扩展欧几里得算法的一致,所以一定有整数解存在。
Reference:
对称加密的原理是数据发送方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。接收方收到密文后,若想解读原文,则需要使用加密密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。
非对称加密的原理是甲方首先生成一对密钥同时将其中的一把作为公开密钥;得到公开密钥的乙方再使用该密钥对需要加密的信息进行加密后再发送给甲方;甲方再使用另一把对应的私有密钥对加密后的信息进行解密,这样就实现了机密数据传输。
对称加密和非对称加密的区别为:密钥不同、安全性不同、数字签名不同。
一、密钥不同
1、对称加密:对称加密加密和解密使用同一个密钥。
2、非对称加密:非对称加密加密和解密所使用的不是同一个密钥,需要两个密钥来进行加密和解密。
二、安全性不同
1、对称加密:对称加密如果用于通过网络传输加密文件,那么不管使用任何方法将密钥告诉对方,都有可能被窃听。
2、非对称加密:非对称加密因为它包含有两个密钥,且仅有其中的“公钥”是可以被公开的,接收方只需要使用自己已持有的私钥进行解密,这样就可以很好的避免密钥在传输过程中产生的安全问题。
三、数字签名不同
1、对称加密:对称加密不可以用于数字签名和数字鉴别。
2、非对称加密:非对称加密可以用于数字签名和数字鉴别。
非对称加密算法需要两个密钥:公开密钥(publickey:简称公钥)和私有密钥(privatekey:简称私钥)。
公钥与私钥是一对,如果用公钥对数据进行加密,只有用对应的私钥才能解密。因为加密和解密使用的是两个不同的密钥,所以这种算法叫作非对称加密算法。
公钥密码(Public-key cryptography) 也称非对称式密码(Asymmetric cryptography)是密码学的一种算法,它需要两个密钥,一个是公开密钥,另一个是私有密钥; 公钥用作加密,私钥则用作解密 。使用公钥把明文加密后所得的密文,只能用相对应的私钥才能解密并得到原本的明文,最初用来加密的公钥不能用作解密。由于加密和解密需要两个不同的密钥,故被称为非对称加密;不同于加密和解密都使用同一个密钥的对称加密。公钥可以公开,可任意向外发布;私钥不可以公开。
1976年以前,所有的加密方法都是同一种模式:加密和解密使用同样的规则。
1976年,由惠特菲尔德·迪菲(Bailey Whitfield Diffie)和马丁·赫尔曼(Martin Edward Hellman)在1976年首次发表 迪菲-赫尔曼密钥交换 。
1977年,Ralph Merkle和Martin Hellman 共同设计了一种具体的公钥密码算法-- Knapsack 。
1978年,罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)共同发表了一种公钥密码算法-- RSA 。
RSA 可以说是现在公钥密码的事实标准 。
在对称密码中,由于加密和解密的密钥是相同的,因此必须向接收者配送密钥。由于解密的密钥必须被配送给接收者,在传输中的过程中存在着被窃听的问题,这一问题称为 密钥配送问题 。
解决密钥配送问题的方法有以下几种:
RSA 是世界第一个广泛使用的公钥算法,可以被用于公钥密码和数字签名。RSA公开密钥密码体制的原理是:根据数论,寻求两个大素数比较简单,而将它们的乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥。它的强度被认为与分解一个非常大的数字的难度有关。以现代数字计算机的当前和可预见的速度,在生成 RSA 密钥时选择足够长的素数应该使该算法无限期地安全。但是,这种信念尚未在数学上得到证明,并且可能有一种快速分解算法或一种完全不同的破解 RSA 加密的方法。
ab = 1
然而只根据 N 和 E(注意:不是p和q)要计算出 d 是不可能的。因此,任何人都可对明文进行加密,但只有授权用户(知道D)才可对密文解密。
RSA 是现在最为普及的一种公钥密码算法,但是除了 RSA之外还有其他的公钥密码,基于与 RSA 等效复杂度的不同数学,包括 ElGamal 加密 、 Rabin 方式 和 椭圆曲线加密 。
在密码学中, ElGamal 加密算法 是一个基于迪菲-赫尔曼密钥交换的非对称加密算法。它在1985年由塔希尔·盖莫尔(Taher ElGamal)提出。ElGamal加密算法利用了 求离散对数的困难数。
Rabin 利用了 下平方根的困难度
椭圆曲线密码 是通过将椭圆曲线上的特定点进行特殊的乘法运算实现,它利用了这种乘法运算的逆运算非常困难这一特性。它的特点是所需的密钥长度比 RSA 短。
非对称加密(公钥加密):指加密和解密使用不同密钥的加密算法,也称为公私钥加密。假设两个用户要加密交换数据,双方交换公钥,使用时一方用对方的公钥加密,另一方即可用自己的私钥解密。如果企业中有n个用户,企业需要生成n对密钥,并分发n个公钥。假设A用B的公钥加密消息,用A的私钥签名,B接到消息后,首先用A的公钥验证签名,确认后用自己的私钥解密消息。由于公钥是可以公开的,用户只要保管好自己的私钥即可,因此加密密钥的分发将变得 十分简单。同时,由于每个用户的私钥是唯一的,其他用户除了可以通过信息发送者的公钥来验证信息的来源是否真实,还可以通过数字签名确保发送者无法否认曾发送过该信息。
链乔教育在线旗下学硕创新区块链技术工作站是中国教育部学校规划建设发展中心开展的“智慧学习工场2020-学硕创新工作站 ”唯一获准的“区块链技术专业”试点工作站。专业站立足为学生提供多样化成长路径,推进专业学位研究生产学研结合培养模式改革,构建应用型、复合型人才培养体系。
产品的开发快则一个月,慢则一年,那么如何杜绝市面上各种山寨也成为了我们必须要关注的问题,加密芯片可以做到这点,在保障开发者权益的同时也保护了消费者权益,KEROS加密芯片作为该领域的领头者,一直在尽力贡献一份力。特点如下:接口:标准I2C协议接口;算法: 标准aes256 / KAS算法;特殊接口:Random Stream Cipher for Interface;工作温度:工业级 -40℃ ~+85℃;频率:400Khz;存储:2K字节EEPROM(可选);电压:1.8V~3.6V;封装:SOT23-6,SOP8,TDFN-6。非对称加密是怎么做的的介绍就聊到这里吧,感谢你花时间阅读本站内容,谢谢。