173 2438 5004
KEROS加密芯片——品牌直销 | 免费样品 | 技术支持
当前位置:网站首页 > 资讯中心 正文 资讯中心

简单加密算法举例讲解教程

keros@mark 2022-10-16 资讯中心

今天给各位分享简单加密算法举例讲解教程的知识,如果能碰巧解决你现在面临的问题,别忘了关注本站。

本文目录一览

des和aes 加解密算法具体步骤?有例子最好

随着计算机网络和计算机通讯技术的发展,计算机密码学得到前所未有的重视并迅速普及和发展起来。由于密码系统的各种性能主要由密码算法所决定,不同的算法决定了不同的密码体制,而不同的密码体制又有着不同的优缺点:有的密码算法高速简便,但加解密密钥相同,密钥管理困难;有的密码算法密钥管理方便安全,但计算开销大、处理速度慢。基于此,本文针对两种典型的密码算法DES和RSA的特点进行讨论分析,并提出一种以这两种密码体制为基础的混合密码系统,来实现优势互补。

1 密码系统简介

1.1 密码系统分类

密码系统从原理上可分为两大类,即单密钥系统和双密钥系统。单密钥系统又称为对称密码系统,其加密密钥和解密密钥或者相同,或者实质上相同,即易于从一个密钥得出另一个,如图1所示。双密钥系统又称为公开密钥密码系统,它有两个密钥,一个是公开的,用K1表示,谁都可以使用;另一个是私人密钥,用K2表示,只由采用此系统的人掌握。从公开的密钥推不出私人密钥,如图2所示。

1.2 两种密码系统分析

1.2.1 对称密码系统(单钥密码系统)

对称密码系统中加密和解密均采用同一把密钥,而且通信双方必须都要获得这把密钥。这就带来了一系列问题。首先,密钥本身的发送就存在着风险,如果在发送中丢失,接受方就不可能重新得到密文的内容;其次,多人通信时密钥的组合的数量会出现爆炸性的膨胀,N个人两两通信,需要N*(N-1)/2把密钥,增加了分发密钥的代价和难度;最后,由于通信双方必须事先统一密钥,才能发送保密的信息,这样,陌生人之间就无法发送密文了。

1.2.2 公开密钥密码系统(双钥密码系统)

公开密钥密码系统中,收信人生成两把数学上关联但又不同的公钥和私钥,私钥自己保存,把公钥公布出去,发信人使用收信人的公钥对通信文件进行加密,收信人收到密文后用私钥解密。公开密钥密码系统的优势在于,首先,用户可以把用于加密的钥匙公开地发给任何人,并且除了持有私有密钥的收信人之外,无人能解开密文;其次,用户可以把公开钥匙发表或刊登出来,使得陌生人之间可以互发保密的通信;最后,公开密钥密码系统提供了数字签字的公开鉴定系统,而这是对称密码系统不具备的。

1.3 典型算法

对称密码系统的算法有DES,aes,RC系列,DEA等,公开密钥密码系统的算法有RSA,Diffie-Hellman, Merkle-Hellman等。

2 DES算法

DES (Data Encryption Standard,数据加密标准)是一个分组加密算法,它以64 bit位(8 byte)为分组对数据加密,其中有8 bit奇偶校验,有效密钥长度为56 bit。64 位一组的明文从算法的一端输入,64 位的密文从另一端输出。DES算法的加密和解密用的是同一算法,它的安全性依赖于所用的密钥。DES 对64位的明文分组进行操作,通过一个初始置换,将明文分组成左半部分和右半部分,各32位长。然后进行16轮完全相同的运算,这些运算被称为函数f,在运算过程中数据与密钥结合。经过16轮后,左、右半部分合在一起经过一个末置换(初始置换的逆置换),完成算法。在每一轮中,密钥位移位,然后再从密钥的56位中选出48位。通过一个扩展置换将数据的右半部分扩展成48位,并通过一个异或操作与48位密钥结合,通过8个s盒将这48位替代成新的32位数据,再将其置换一次。这些运算构成了函数f。然后,通过另一个异或运算,函数f输出与左半部分结合,其结果即成为新的右半部分, 原来的右半部分成为新的左半部分。将该操作重复16次,实现DES的16轮运算。

3 RSA算法

RSA算法使用两个密钥,一个公共密钥,一个私有密钥。如用其中一个加密,则可用另一个解密。密钥长度从40到2048 bit可变。加密时把明文分成块,块的大小可变,但不能超过密钥的长度,RSA算法把每一块明文转化为与密钥长度相同的密文块。密钥越长,加密效果越好,但加密解密的开销也大,所以要在安全与性能之间折衷考虑,一般64位是较合适的。RSA算法利用了陷门单向函数的一种可逆模指数运算,描述如下:(1)选择两个大素数p和q;(2)计算乘积n=pq和φ(n)=(p-1)(q-1);(3)选择大于1小于φ(n)的随机整数e,使得

gcd(e,φ(n))=1;(4)计算d使得de=1modφ(n);(5)对每一个密钥k=(n,p,q,d,e),定义加密变换为Ek(x)=xemodn,解密变换为Dk(y)=ydmodn,这里x,y∈Zn;(6)以{e,n}为公开密钥,{p,q,d}为私有密钥。

4 基于DES和RSA的混合密码系统

4.1 概述

混合密码系统充分利用了公钥密码和对称密码算法的优点,克服其缺点,解决了每次传送更新密钥的问题。发送者自动生成对称密钥,用对称密钥按照DES算法加密发送的信息,将生成的密文连同用接受方的公钥按照RSA算法加密后的对称密钥一起传送出去。收信者用其密钥按照RSA算法解密被加密的密钥来得到对称密钥,并用它来按照DES算法解密密文。

4.2 具体实现步骤

(1)发信方选择对称密钥K(一般为64位,目前可以达到192位)

(2)发信方加密消息:对明文按64位分组进行操作,通过一个初始置换,将明文分组成左半部分和右半部分。然后进行16轮完全相同的运算,最后,左、右半部分合在一起经过一个末置换(初始置换的逆置换),完成算法。在每一轮中,密钥位移位,然后再从密钥的56位中选出48位。通过一个扩展置换将数据的右半部分扩展成48位,并通过一个异或操作与48位密钥结合,通过8个S盒将这48位替代成新的32位数据,再将其置换一次。然后通过另一个异或运算,输出结果与左半部分结合,其结果即成为新的右半部分,原来的右半部分成为新的左半部分。如图3所示。

(3)收信方产生两个足够大的强质数p、q,计算n=p×q和z=(p-1)×(q-1),然后再选取一个与z互素的奇数e,从这个e值找出另一个值d,使之满足e×d=1 mod (z)条件。以两组数(n,e) 和 (n,d)分别作为公钥和私钥。收信方将公钥对外公开,从而收信方可以利用收信方的公钥对 (1)中产生的对称密钥的每一位x进行加密变换Ek(x)=xemodn;

(4)发信方将步骤(2)和(3)中得到的消息的密文和对称密钥的密文一起发送给收信方;

(5)收信方用(3)中得到的私钥来对对称密钥的每一位y进行解密变换Dk(y)=ydmodn,从而得到(1)中的K;

(6)收信方用对称密钥K和DES算法的逆步骤来对消息进行解密,具体步骤和(2)中恰好相反,也是有16轮迭代。

(7)既可以由收信方保留对称密钥K来进行下一次数据通信,也可以由收信方产生新的对称密钥,从而使K作废。

4.3 两点说明

4.3.1 用公钥算法加密密钥

在混合密码系统中,公开密钥算法不用来加密消息,而用来加密密钥,这样做有两个理由:第一,公钥算法比对称算法慢,对称算法一般比公钥算法快一千倍。计算机在大约15年后运行公开密钥密码算法的速度才能比得上现在计算机运行对称密码的速度。并且,随着带宽需求的增加,比公开密钥密码处理更快的加密数据要求越来越多。第二,公开密钥密码系统对选择明文攻击是脆弱的。密码分析者只需要加密所有可能的明文,将得到的所有密文与要破解的密文比较,这样,虽然它不可能恢复解密密钥,但它能够确定当前密文所对应的明文。

4.3.2 安全性分析

如果攻击者无论得到多少密文,都没有足够的信息去恢复明文,那么该密码系统就是无条件安全的。在理论上,只有一次一密的系统才能真正实现这一点。而在本文所讨论的混合密码系统中,发信方每次可以自由选择对称密钥来加密消息,然后用公钥算法来加密对称密钥,即用户可以采用一次一密的方式来进行数据通信,达到上述的无条件安全。

5 小结

基于DES和RSA的混合密码系统结合了公钥密码体制易于密钥分配的特点和对称密码体制易于计算、速度快的特点,为信息的安全传输提供了良好的、快捷的途径,使数据传输的密文被破解的几率大大降低,从而对数据传输的安全性形成更有力的保障,并且发信方和收信方对密钥的操作自由度得到了很大的发挥。

传统的加密方法有哪些

本文只是概述几种简单的传统加密算法,没有DES,没有RSA,没有想象中的高端大气上档次的东东。。。但是都是很传统很经典的一些算法

首先,提到加密,比如加密一段文字,让其不可读,一般人首先会想到的是将其中的各个字符用其他一些特定的字符代替,比如,讲所有的A用C来表示,所有的C用E表示等等…其中早的代替算法就是由Julius Caesar发明的Caesar,它是用字母表中每个字母的之后的第三个字母来代替其本身的(C=E(3,p)=(p+3) mod 26),但是,这种加密方式,很容易可以用穷举算法来破解,毕竟只有25种可能的情况..

为了改进上诉算法,增加其破解的难度,我们不用简单的有序的替代方式,我们让替代无序化,用其中字母表的一个置换(置换:有限元素的集合S的置换就是S的所有元素的有序排列,且每个元素就出现一次,如S={a,b}其置换就只有两种:ab,ba),这样的话,就有26!种方式,大大的增加了破解的难度,但是这个世界聪明人太多,虽然26!很多,但是语言本身有一定的特性,每个字母在语言中出现的相对频率可以统计出来的,这样子,只要密文有了一定数量,就可以从统计学的角度,得到准确的字母匹配了。

上面的算法我们称之为单表代替,其实单表代替密码之所以较容易被攻破,因为它带有原始字母使用频率的一些统计学特征。有两种主要的方法可以减少代替密码里明文结构在密文中的残留度,一种是对明文中的多个字母一起加密,另一种是采用多表代替密码。

先说多字母代替吧,最著名的就是playfair密码,它把明文中的双字母音节作为一个单元并将其转换成密文的双字母音节,它是一个基于由密钥词构成的5*5的字母矩阵中的,一个例子,如密钥为monarchy,将其从左往右从上往下填入后,将剩余的字母依次填入剩下的空格,其中I/J填入同一个空格:

对明文加密规则如下:

1 若p1 p2在同一行,对应密文c1 c2分别是紧靠p1 p2 右端的字母。其中第一列被看做是最后一列的右方。

2 若p1 p2在同一列,对应密文c1 c2分别是紧靠p1 p2 下方的字母。其中第一行被看做是最后一行的下方。

3 若p1 p2不在同一行,不在同一列,则c1 c2是由p1 p2确定的矩形的其他两角的字母,并且c1和p1, c2和p2同行。

4 若p1 p2相同,则插入一个事先约定的字母,比如Q 。

5 若明文字母数为奇数时,则在明文的末端添加某个事先约定的字母作为填充。

虽然相对简单加密,安全性有所提高,但是还是保留了明文语言的大部分结构特征,依旧可以破解出来,另一个有意思的多表代替密码是Hill密码,由数学家Lester Hill提出来的,其实就是利用了线性代数中的可逆矩阵,一个矩阵乘以它的逆矩阵得到单位矩阵,那么假设我们对密文每m个字母进行加密,那么将这m个字母在字母表中的序号写成矩阵形式设为P(如abc,[1,2,3]),密钥就是一个m阶的矩阵K,则C=P*K mod26,,解密的时候只要将密文乘上K的逆矩阵模26就可以了。该方法大大的增加了安全性。

几种简单的图像加密方法

给图片文件加密有3种方法:

1 用系统自带的EFS加密,但要注意备份加密证书,另外在加密帐号下是看不到加密效果的。

2 用winrar的压缩加密,但速度慢,操作麻烦。

3 用超级加密3000加密文件,超级加密3000采用先进的加密算法,使你的文件加密后,真正的达到超高的加密强度,让你的加密文件无懈可击,没有密码无法解密。

您可以根据自己的实际需求选择一款属于自己的文件加密方法。

用c语言设计一个简单地加密算,解密算法,并说明其中的原理

可能很长 ,这是在我以前一个程序里摘出来的。

原理:用户输入创建密码,机器读取,并把每一位密码进行加密,这里就是把每一位的 ASCII码加一(也可以有其他的加密方式),然后保存在文件里。解密时从文件中读取保存的乱码,然后把它每一位的ascII码减一 在与你输入的密码比较,正确既可以进入。

#define CODE_SIZE 10

int password()

{

FILE *fp;

char s1[CODE_SIZE], s2[CODE_SIZE], s3[CODE_SIZE], fun;

while (1)

{

fp = fopen("password.txt", "r");

if (fp == NULL)

{

printf("第一次运行,请输入初始密码(最多8位):\n");

scanf("%s", s1);

printf("请再次输入初始密码:\n");

scanf("%s", s2);

if (strcmp(s1, s2) == 0)

{

fp = fopen("password.txt", "w+");

if (fp == NULL)

{

printf("创建文件失败退出\n");

getch();

exit(1);

}

else

{

//对s1加密

for (int i = 0; iCODE_SIZEs1[i] != ' '; i++)

{

s1[i] = s1[i] + i;

}

fputs(s1, fp);

printf("初始密码创建完成.\n");

}

}

else

{

printf("两次输入的密码不一致!\n");

}

fclose(fp);

}

else

{

fgets(s1, CODE_SIZE, fp);

fclose(fp);

printf("输入密码:\n");

scanf("%s", s2);

//对s1解密

for (int i = 0; iCODE_SIZEs1[i] != ' '; i++)

{

s1[i] = s1[i] - i;

}

loop:

if (strcmp(s1, s2) == 0)

{

printf("-----密码正确-----\n");

printf("-----请选择功能-----\n");

printf("-----1:修改密码-----\n");

printf("-----2:进入通讯录-----\n");

scanf("%d", fun);

switch (fun)

{

case 1: printf("请输入新密码\n");

scanf("%s", s1);

printf("请再次输入新密码\n");

scanf("%s", s2);

if (strcmp(s1, s2) == 0)

{

fp = fopen("password.txt", "w+");

if (fp == NULL)

{

printf("文件错误!\n");

}

else

{ //对s1加密

for (int i = 0; iCODE_SIZEs1[i] != ' '; i++)

{

s1[i] = s1[i] + i;

}

fputs(s1, fp);

fclose(fp);

printf("密码修改成功\n");

}

}

else

{

printf("两次输入的密码不一致,修改失败\n");

}

break;

case 2: return 1;

default: printf("无效指令\n");

}

}

else

{

printf("密码错误\n请重新输入\n");

scanf("%s", s2);

goto loop;

}

}

printf("------------------\n\n\n\n");

}

}

RSA加密算法简易演示

RSA算法安全性本质是三大数学困难问题之一也就是大数分解问题,因为目前尚没有一种有效的方法可以在短时间内分解两个大素数的乘积。验证步骤如上面所说的,原理书上有,具体程序实现简单讲一下

判断质数,这是基本水平,可以穷举也可以建表,按自己喜好

这一步是计算两个大素数乘积没什么好说的

判断两个数互质,一般采用欧几里得算法,辗转相除直到得到gcd(e1,m)=1。当然你也可以穷举公因数一直到sqrt(min{e1,m})

计算乘法逆元是依靠广义欧几里得算法,乘法逆元的意思是形如a*a1 ≡ 1(mod m)这样的(因为这里的群的乘法定义就是数学乘法),a和a1互为彼此模m的逆元,记作a1=a^-1 mod m,只有gcd(a,m)=1时才有唯一解否则无解。

计算方法是广义欧几里得除法,设r0=m,r1=a,s0=1,s1=0,t0=0,t1=1;

计算ai=[r(i-1)/ri],r(i+1)=r(i-1)-airi,s(i+1)=s(i-1)-aisi,t(i+1)=t(i-1)-aiti,直到ri=0

举例如a=7,m=13,计算a^-1 mod m:

a1=[13/7]=1,r2=r0-a1r1=6,s2=s0-a1s1=1,t2=t0-a1t1=-1;

a2=[7/6]=1,r3=r1-a2r2=1,s3=s1-a2s2=-1,t3=t1-a2t2=2;

a3=[6/1]=6,r4=r2-a3r3=0.

取s=s3=-1,t=t3=2,则有7*2-1*13=1,故a^-1 mod m=t=2。

把上面的方法写成C++算法应该很简单

5和6都是计算同余没什么好说的,记得要用到a^e≡b^e(mod m)化简

要毕业了还搞不懂逆元有点拙计啊,回去好好看看离散数学吧

请简述数字加密的过程

对称加密中,数据发送方将明文(原始数据)和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。

接收方收到密文后,若想解读原文,则需要使用加密密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密。

扩展资料:

数字加密注意事项:

通过TCP三次握手进行连接,然后客户端发送hello包到服务端,服务端回应一个hello包,如果客户端需要再次发送数字证书, 则发送数字证书到客户端。

客户端得到服务器的证书后通过CA服务验证真伪、验证证书的主体与访问的主体是否一致,验证证书是否在吊销证书列表中。如果全部通过验证则与服务器端进行加密算法的协商。

用证书中服务器的公钥加密对称秘钥发送给服务器端,对称秘钥只能用服务器的私钥进行解密,当服务器通过私钥解密对称秘钥后。使用对称秘钥将客户端请求的数据发送到客户端,客户端在用对称秘钥进行解密,从而得到想要的数据。

参考资料来源:百度百科-数字加密标准

随着社会的发展,产品的更新速度也是越来越快,算法是方案的核心,保护开发者和消费者的权益刻不容缓,那么加密芯片在其中就扮演了重要的角色,如何选择加密芯片呢?
1.市面上加密芯片种类繁多,算法多种,加密芯片强度参差不齐,加密性能与算法、秘钥密切相关。常见的加密算法有对称算法,非对称算法,国密算法,大部分都是基于I2C、SPI或1-wire协议进行通信。加密芯片还是需要项目实际需求选择,比如对称加密算法的特点是计算量小、加密速度快、加密效率高等。
2.因为单片机软加密性能较弱且非常容易被复制,所以有了加密芯片的产生,大大增加了破解难度和生产成本。目前加密芯片广泛应用于车载电子、消费电子、美容医疗、工业控制、AI智能等行业。
3.韩国KEROS加密芯片专注加密领域十多年,高安全性、低成本,在加密保护领域受到了众多客户的高度赞扬及认可。KEROS采用先进的内置aes256安全引擎和加密功能,通过真动态数据交互并为系统中敏感信息的存储提供了安全的场所,有了它的保护电路,即使受到攻击,这些信息也可以保持安全。其封装SOP8,SOT23-6,TDFN-6集成I2C与1-wire协议满足不同应用需求。CK02AT、CK22AT、CK02AP、CK22AP支持1.8V-3.6V,256bit位秘钥长度,5bytes SN序列号,支持定制化免烧录,加密行业首选。关于简单加密算法举例讲解教程的介绍到此就结束了,感谢大家耐心阅读。

本文标签:简单加密算法举例讲解教程

产品列表
产品封装
友情链接