173 2438 5004
KEROS加密芯片——品牌直销 | 免费样品 | 技术支持
当前位置:网站首页 > 资讯中心 正文 资讯中心

非对称加密应用

keros@mark 2022-10-17 资讯中心

本文目录一览

什么是对称密码和非对密码,分析这两种密码体系的特点和应用领域

一、对称密码

1、定义:采用单钥密码系统的加密方法,同一个密钥可以同时用作信息的加密和解密,这种加密方法称为对称加密,也称为单密钥加密。

2、特点:算法公开、计算量小、加密速度快、加密效率高。

3、应用领域:由于其速度快,对称性加密通常在消息发送方需要加密大量数据时使用。

二、非对密码

1、定义:非对称密码指的是非对称密码体制中使用的密码。

2、特点:

(1)是加密密钥和解密密钥不同 ,并且难以互推 。

(2)是有一个密钥是公开的 ,即公钥 ,而另一个密钥是保密的 ,即私钥。

3、应用领域:很好的解决了密钥的分发和管理的问题 ,并且它还能够实现数字签名。

扩展资料

对称加密算法特征

1、加密方和解密方使用同一个密钥;

2、加密解密的速度比较快,适合数据比较长时的使用;

3、密钥传输的过程不安全,且容易被破解,密钥管理也比较麻烦

参考资料来源:百度百科——非对称密码

参考资料来源:百度百科——对称加密

非对称加密算法有哪些

RSA:RSA 是一种目前应用非常广泛、历史也比较悠久的非对称秘钥加密技术,在1977年被麻省理工学院的罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)三位科学家提出,由于难于破解,RSA 是目前应用最广泛的数字加密和签名技术,比如国内的支付宝就是通过RSA算法来进行签名验证。它的安全程度取决于秘钥的长度,目前主流可选秘钥长度为 1024位、2048位、4096位等,理论上秘钥越长越难于破解,按照维基百科上的说法,小于等于256位的秘钥,在一台个人电脑上花几个小时就能被破解,512位的秘钥和768位的秘钥也分别在1999年和2009年被成功破解,虽然目前还没有公开资料证实有人能够成功破解1024位的秘钥,但显然距离这个节点也并不遥远,所以目前业界推荐使用 2048 位或以上的秘钥,不过目前看 2048 位的秘钥已经足够安全了,支付宝的官方文档上推荐也是2048位,当然更长的秘钥更安全,但也意味着会产生更大的性能开销。

DSA:既 Digital Signature Algorithm,数字签名算法,他是由美国国家标准与技术研究所(NIST)与1991年提出。和 RSA 不同的是 DSA 仅能用于数字签名,不能进行数据加密解密,其安全性和RSA相当,但其性能要比RSA快。

ECDSA:Elliptic Curve Digital Signature Algorithm,椭圆曲线签名算法,是ECC(Elliptic curve cryptography,椭圆曲线密码学)和 DSA 的结合,椭圆曲线在密码学中的使用是在1985年由Neal Koblitz和Victor Miller分别独立提出的,相比于RSA算法,ECC 可以使用更小的秘钥,更高的效率,提供更高的安全保障,据称256位的ECC秘钥的安全性等同于3072位的RSA秘钥,和普通DSA相比,ECDSA在计算秘钥的过程中,部分因子使用了椭圆曲线算法。

什么是非对称加密?

它是和对称加密相对应的。

对称加密是比较原始的加密手段,它的特点就是加密的密码和解密的密码是同一个,比如说压缩软件就是,即你在压缩包上加的密码是什么,解密的密码也必须是这个。很显然,对称加密的好处是简单快捷,坏处是保密性不佳,你得告诉对方这个密码才行,即中间必须存在一个双方交流密码的过程,这就产生了被人窃去的危险——别人要是窃去了这个密码,那信息也就暴露了。

非对称加密则是,想要加密一个文件,需要生出两个密码,一个公开密码,一个私人密码。比如说你想让对方给你发涉密文件,你就用非对称加密工具生出公私两个密码,然后把公开密码发给他,对方就用这个公开密码对要传来的文档进行加密,然后把这个用公开密码加密的文件发给你,你就可以用你的私人密码进行解密。对方或别人仅仅知道公开密码,无法就此逆推出私人密码,所以能够保证私人密码的安全性,也就保证了传输过程的保密性,涉密文件不会就此被人解密(别人偷去无用,因为没有私人密码,无法解开)。这就是非对称加密在涉密文件传输的应用。

如果把上边这个过程反过来,非对称加密则会实现另一种用途,电子签名。比如说你发了一份文件,别人怎么会知道这个文件就是你发的,而不是别人冒用你的身份发的呢?就算有你的亲笔签名,可架不住有笔迹摹仿高手呢。这种时候,你就可以用你的私有密码对这份公开的文件进行加密,然后再把公开密码随同公布。如果别人用你公布的公开密码能够对此文件进行解密,如此便可以就此验证出加密者就是你本人,它的安全性很高,其保密性比真正的笔迹更要安全。

非对称应用的这两个过程可以各简缩成四个字,就是传输涉密文件时,“公(用密码)加私(人密码)解”,电子签名(验明发文者正身)时,是“私(人密码)加公(开密码)解”。

可以看出,非对称加密的好处就是保密性好,因为中间不需要双方交流私人密码的过程——只需要交流公开密码,而这个公开密码第三方偷去了没用(无法就它推导出私人密码),不好处也很明显,就是过程相对复杂,解密效率不及对称式的。

嗯,非对称加密对比对称加密,还有一个明显的不同点,即加密者自己无法解密。对方得到公开密码后,用它对文件进行加密后,这个加密后的文件,对方虽然是生成者,可他自己也没法解密。这一点和对称加密截然不同。

所以,要是需要双方或多方交流重要、敏感的信息,还是用非对称加密为宜。但若是自个儿保密用的,或是文件密级不是那么高的,综合看来大概用对称加密更好。

9 非对称加密

目前为止,本书中只讨论到对称加密。假设一个密码系统不只有一个密钥,而是有一对密钥,其中公钥可以自由地发布,而私钥由自己保管。其他人可以使用你的公钥来加密数据,这个信息只有你的私钥可以解密,这个被称为 公钥加密(public-key encryption)

很长一段时间,这都被认为是不可能的。然而从1970年开始,这一类型的算法开始出现。第一个广为流传的是MIT的三位密码学家:Ron Rivest,Adi Shamir 和Leonard Adleman提出的RSA。

公钥算法并不仅仅用来加密,实际上本书之前的部分已经提到过公钥算法而其不是直接用在加密上。有三个与公钥算法相关的主题

从表面来看,公钥加密好像可以淘汰之前提到的对称密钥算法。对于任何事情都可以使用公钥加密,也不需要对称密钥系统中的密钥交换过程。然而在实际的密码学系统中,可以看到到处都是混合的加密,公钥加密在其中起着重要作用,但是大部分的加解密以及认证工作还是基于对成密钥算法的。

目前来看最重要的原因是性能。与流密码(原生的流密码或者其他)算法相比,公钥加密机制实在是太慢了。RSA通常情况下需要2048位也就是256个字节。其加密需要0.29百万次循环,解密需要11.12百万次循环。而对称加密和解密只需要每字节约10次循环。这也意味着在对称密钥算法中,解密256位数据,只需要3000次循环,这个效率是非对称版本的4000次。而目前的密码系统使得对称加密更快了,在aes-GCM硬件加速或者Salsa20/ChaCha20只需要2或者4次每字节,更大程度上提高了性能。

实际的密码系统中还有更多其他的问题。例如对于RSA来说,它不能加密任何比它大的信息,通常情况是小于或者等于4096位,比大部分的需求要小的多。当然最重要的问题依然是上述的速度的问题。

本节简单描述RSA背后的数学问题。其本身并不能产生安全加密机制。之后会看到在其上构造的密码指导OAEP。

为了产生一个key,需要挑选两个大素数p和q,这些数需要随机私密的挑选。将两者相乘的到N,这个是公开的。然后选择一个加密指数e,这个也是公开的。通常这个数是3或者65537.因为这些数的二进制形式中仅有很少量的1。计算指数会更有效。(N,e)是公钥,任何人都可以用公钥来加密消息M,得到密文C。

接下来的问题是解密,有一个解密指数d,可以将C转化会M。如果指导p和q,d很容易计算。可以使用d来解密消息:

RSA的安全性依赖于对于不知道d的人来说解密操作是不可能的,并且在只知道(N,e)的情况下d的计算是非常难的。

类似于很多密码系统,RSA依赖于特定数学问题的难度。给定密文C,和公钥(N,e),反推出明文M。这被称为RSA难题。

最直接的方法是将N分解为p*q。给定p和q,攻击者只需要重复密钥拥有者的过程来计算产生d即可。

幸运的是,没有一个算法可以在合理的时间内分解这么大的数。不幸的是,目前也无法证明该算法一定不存在。更加糟糕的是,有一个理论上的算法,被称为Shor's Algorithm,可以在量子计算机上在合理的时间内分解一个数。目前,量子计算机还离我们有些远,但是未来某天可能就会成为现实。到时候RSA就变得不再有效。

本节中仅仅提到了分解大数这个最直接的方式来攻击RSA。在接下来的部分可以看到一系列针对RSA的实际攻击,其主要依赖于一些具体的实现。

目前,没有已知的实际的攻破RSA的方法。但这不意味着使用RSA的系统没有被攻破过。和其他被攻破的系统一样,应用中有很多组成部分,一旦其中的某部分没有恰当的使用,就会使整个系统变得不可用。更多有关RSA实施的细节的,参考【Bon99】和【AV96】,本部分只提及一些有趣的部分。

Salt是一个用python写的供应系统。它有一个模块叫做 cypto ,它没有使用已有的密码学系统,而是实现了一个自己的,其中使用的RSA和aes由第三方库提供。

很长一段时间里,Salt使用的公钥指数e是1,这也就意味着P e=P 1=P(mod N)。这也就意味着结果的密文就是明文。目前该问题已经被修复,这里只是为了提醒大家,不要实现自己的加密系统。Salt现在支持了SSH作为传输蹭,但是先前提到的DIY的RSA/aes系统依然存在,并且还是默认的传输层。

OAEP是Optimal asymmetric encryption padding的简称,是RSA填充的一种。它的结构类似于下图(文档中这个图有问题,下面是正确的图):

最终产生的需要被加密的数据是X||Y,是n位长,这个n是N的位数。它使用一个随机的块R它的长度是k,在这个标准中,k是一个定值。消息首先需要用0填充被扩充到n-k位。图中左边的长度为n-k位,右边的长度为k。随机块R和以0扩充的M,M||000...使用两个陷阱函数,G和H。陷阱函数都是从一个方向计算非常简单,但是逆转非常的难。世纪中通常为hash函数。

G的输入是k位,输出是n-k位,H的输入是n-k位,输出是k位。

然后结果的X和Y被连接在一起,然后由标准的RSA来进行加密产生密文。

解密的时候,要反过来操作。接收者收到X||Y,他们是指导k的,因为这个是协议里的定值。所以前n-k是X,后k位是Y。

想要得到M,M||000...,需要去计算

可以看出,对于一些H和G来说,需要所有的X和Y才能找到M。对于H和G有很多种基于Hash函数的选择。

绝大多数的公钥加密只能一次加密一小块,一般都远小于要发送的信息。另外这些算法还很慢,比对称加密要慢的多。通常非对称加密用来连接密码系统。

有了公钥密码和密钥交换,是密码学里面两个非常重要的部分,因为人们总是需要与其他人交换私密的信息。有了这两个技术就可以安全地和其他人交流。

目前为止讨论的加密都没有任何形式的身份认证。这也就意味着对消息进行加密和解密,并不能验证得到的消息确实是发送者发送的原本的消息。

没有身份认证的加密可以提供隐私性,但是如之前章节所言,没有身份认证,尽管攻击者不知道任何原文的信息,他任然可以修改加密的信息。接收这些消息会泄漏一些私密的信息,这也就意味着私密性不在。例如之前第7章提到的CBC的填充攻击。

综上所言,出了加密私密的信息之外,还需要对其进行身份认证。通常身份认证都是对消息增加一些额外的可计算的信息。类似于加密,身份认证也分为对称类型的和非对称类型的。对称类型的通常被称为消息认证(message authentication),非对称类型的通常被称为数字签名。

下一章先介绍一下另一个密码学中的重点:hash函数。hash在产生签名和消息认证等过程中都需要用到。

[Bon99] Dan Boneh. Twenty years of attacks on the RSA cryptosystem. Notices of the AMS , 46:203–213, 1999. URL: .

[AV96] Ross Anderson and Serge Vaudenay. Minding your pʼs and qʼs. In In Advances in Cryptology - ASIACRYPT’96, LNCS 1163 , 26–35. Springer� Verlag, 1996. URL: .

非对称加密的代表例子有哪些?

非对称加密主要算法: RSA、Elgamal、背包算法、Rabin、D-H、ECC(椭圆曲线加密算法)。

使用最广泛的是RSA算法,Elgamal是另一种常用的非对称加密算法。

经典的非对称加密算法如RSA算法等安全性都相当高.

非对称加密的典型应用是数字签名。

非对称加密算法的主要应用

非对称加密(公钥加密):指加密和解密使用不同密钥的加密算法,也称为公私钥加密。假设两个用户要加密交换数据,双方交换公钥,使用时一方用对方的公钥加密,另一方即可用自己的私钥解密。如果企业中有n个用户,企业需要生成n对密钥,并分发n个公钥。假设A用B的公钥加密消息,用A的私钥签名,B接到消息后,首先用A的公钥验证签名,确认后用自己的私钥解密消息。由于公钥是可以公开的,用户只要保管好自己的私钥即可,因此加密密钥的分发将变得 十分简单。同时,由于每个用户的私钥是唯一的,其他用户除了可以通过信息发送者的公钥来验证信息的来源是否真实,还可以通过数字签名确保发送者无法否认曾发送过该信息。非对称加密的缺点是加解密速度要远远慢于对称加密,在某些极端情况下,甚至能比对称加密慢上1000倍。

DSACryptoServiceProviderRSACryptoServiceProvider

//加密

UnicodeEncoding encoding = new UnicodeEncoding();

byte[] PasswordBytes = encoding.GetBytes(password);//将密码转换为字节数组RSACryptoServiceProvider crypt=new RSACryptoServiceProvider();//RSA加密算法,非对称PasswordBytes=crypt.Encrypt(password ,false);//加密字节数组,这是加密后的密码值,放入数据库中的表字段中。

string key=crypt.ToXmlString(true);//输出密钥为XML格式的字符串,且包含私钥,这个字符串要作为数据库表中的一个字段同用户的密码放在一起。

//解密

RSACryptoServiceProvider crypt=new RSACryptoServiceProvider();//已随机生成了一个密钥对

crypt.Clear();//毁掉当前密钥对

crypt.FromXmlString(key)//输入密钥对,key是从数据库表字段中读取的那个XML格式的字符串,即密钥字段PasswordBytes=crypt.Decrypt(password ,false);//解密字节数组,返回原始密码给用户

上面方法的一个特点是每个用户对应一个密钥(包含公钥和私钥),它们都是随机生成的,所以各不相同。不过缺点也是很明显的,就是密钥存储在数据库中,如果数据库被攻破密钥就泄漏了。

还有另外一个方法就是依照上面方法随机生成一个密钥对(包含公钥和私钥),通过ToXmlString(true)方法导出,然后把这个XML字符串格式的密钥放到你的Web程序的Web.config文件的AppSetting节点里面,然后通过FromXmlString(key)方法读入密钥,这样就意味着所有的用户密码都用同一个密钥对加密和解密。

随着社会的发展,产品的更新速度也是越来越快,算法是方案的核心,保护开发者和消费者的权益刻不容缓,那么加密芯片在其中就扮演了重要的角色,如何选择加密芯片呢?
1.市面上加密芯片种类繁多,算法多种,加密芯片强度参差不齐,加密性能与算法、秘钥密切相关。常见的加密算法有对称算法,非对称算法,国密算法,大部分都是基于I2C、SPI或1-wire协议进行通信。加密芯片还是需要项目实际需求选择,比如对称加密算法的特点是计算量小、加密速度快、加密效率高等。
2.因为单片机软加密性能较弱且非常容易被复制,所以有了加密芯片的产生,大大增加了破解难度和生产成本。目前加密芯片广泛应用于车载电子、消费电子、美容医疗、工业控制、AI智能等行业。
3.韩国KEROS加密芯片专注加密领域十多年,高安全性、低成本,在加密保护领域受到了众多客户的高度赞扬及认可。KEROS采用先进的内置aes256安全引擎和加密功能,通过真动态数据交互并为系统中敏感信息的存储提供了安全的场所,有了它的保护电路,即使受到攻击,这些信息也可以保持安全。其封装SOP8,SOT23-6,TDFN-6集成I2C与1-wire协议满足不同应用需求。CK02AT、CK22AT、CK02AP、CK22AP支持1.8V-3.6V,256bit位秘钥长度,5bytes SN序列号,支持定制化免烧录,加密行业首选。关于非对称加密应用的介绍到此就结束了,感谢大家耐心阅读。

本文标签:非对称加密应用

产品列表
产品封装
友情链接