173 2438 5004
KEROS加密芯片——品牌直销 | 免费样品 | 技术支持
当前位置:网站首页 > 资讯中心 正文 资讯中心

rsa加密算法过程

keros@mark 2022-10-18 资讯中心

今天给各位分享rsa加密算法过程的知识,如果能碰巧解决你现在面临的问题,别忘了关注本站。

本文目录一览

RSA  加密算法(原理篇)

前几天看到一句话,“我们中的很多人把一生中最灿烂的笑容大部分都献给了手机和电脑屏幕”。心中一惊,这说明了什么?手机和电脑已经成为了我们生活中的一部分,所以才会有最懂你的不是你,也不是你男朋友,而是大数据。

如此重要的个人数据,怎样才能保证其在互联网上的安全传输呢?当然要靠各种加密算法。说起加密算法,大家都知道有哈希、对称加密非对称加密了。哈希是一个散列函数,具有不可逆操作;对称加密即加密和解密使用同一个密钥,而非对称加密加密和解密自然就是两个密钥了。稍微深入一些的,还要说出非对称加密算法有DES、3DES、RC4等,非对称加密算法自然就是RSA了。那么当我们聊起RSA时,我们又在聊些什么呢?今天笔者和大家一起探讨一下,有不足的地方,还望各位朋友多多提意见,共同进步。

RSA简介:1976年由麻省理工学院三位数学家共同提出的,为了纪念这一里程碑式的成就,就用他们三个人的名字首字母作为算法的命名。即 罗纳德·李维斯特 (Ron Rivest)、 阿迪·萨莫尔 (Adi Shamir)和 伦纳德·阿德曼 (Leonard Adleman)。

公钥:用于加密,验签。

私钥:解密,加签。

通常知道了公钥和私钥的用途以后,即可满足基本的聊天需求了。但是我们今天的主要任务是来探究一下RSA加解密的原理。

说起加密算法的原理部分,肯定与数学知识脱不了关系。

我们先来回忆几个数学知识:

φn = φ(A*B)=φ(A)*φ(B)=(A-1)*(B-1)。

这个公式主要是用来计算给定一个任意的正整数n,在小于等于n的正整数中,有多少个与n构成互质的关系。

其中n=A*B,A与B互为质数,但A与B本身并不要求为质数,可以继续展开,直至都为质数。

在最终分解完成后,即 φ(N) = φ(p1)*φ(p2)*φ(p3)... 之后,p1,p2,p3都是质数。又用到了欧拉函数的另一个特点,即当p是质数的时候,φp = p - 1。所以有了上面给出的欧拉定理公式。

举例看一下:

计算15的欧拉函数,因为15比较小,我们可以直接看一下,小于15的正整数有 1、2、3、4、5、6、7、8、9、10、11、12、13、14。和15互质的数有1、2、4、7、8、11、13、14一共四个。

对照我们刚才的欧拉定理: 。

其他感兴趣的,大家可以自己验证。

之所以要在这里介绍欧拉函数,我们在计算公钥和私钥时候,会用到。

如果两个正整数m 和 n 互质,那么m 的 φn 次方减1,可以被n整除。

 其中  .

其中当n为质数时,那么  上面看到的公式就变成了

 mod n   1.

这个公式也就是著名的 费马小定理 了。

如果两个正整数e和x互为质数,那么一定存在一个整数d,不止一个,使得 e*d - 1 可以被x整除,即 e * d mode x   1。则称 d 是 e 相对于 x的模反元素。

了解了上面所讲的欧拉函数、欧拉定理和模反元素后,就要来一些化学反应了,请看图:

上面这幅图的公式变化有没有没看明白的,没看明白的咱们评论区见哈。

最终我们得到了最重要的第5个公式的变形,即红色箭头后面的:

 mod n   m。

其中有几个关系,需要搞明白,m 与 n 互为质数,φn = x,d 是e相对于x的模反元素。

有没有看到一些加解密的雏形。

从 m 到 m。 这中间涵盖了从加密到解密的整个过程,但是缺少了我们想要的密文整个过程。

OK,下面引入本文的第四个数学公式:

我们来看一下整个交换流程:

1、客户端有一个数字13,服务端有一个数字15;

2、客户端通过计算 3的13次方 对 17 取余,得到数字12; 将12发送给服务端;同时服务端通过计算3的15次方,对17取余,得到数字6,将6发送给客户端。至此,整个交换过程完成。

3、服务端收到数字12以后,继续计算,12的15次方 对 17取余,得到 数字10。

4、客户端收到数字 6以后,继续计算,6的13次方 对 17 取余,得到数字 10。

有没有发现双方,最终得到了相同的内容10。但是这个数字10从来没有在网络过程中出现过。

好,讲到这里,可能有些人已经恍然大悟,这就是加密过程了,但是也有人会产生疑问,为什么要取数字3 和 17 呢,这里还牵涉到另一个数学知识,原根的问题。即3是17的原根。看图

有没有发现规律,3的1~16次方,对17取余,得到的整数是从1~16。这时我们称3为17的原根。也就是说上面的计算过程中有一组原根的关系。这是最早的迪菲赫尔曼秘钥交换算法。

解决了为什么取3和17的问题后,下面继续来看最终的RSA是如何产生的:

还记得我们上面提到的欧拉定理吗,其中 m 与 n 互为质数,n为质数,d 是 e 相对于 φn的模反元素。

当迪菲赫尔曼密钥交换算法碰上欧拉定理会产生什么呢?

我们得到下面的推论:

好,到这里我们是不是已经看到了整个的加密和解密过程了。

其中 m 是明文;c 是密文; n 和 e 为公钥;d 和 n 为私钥 。

其中几组数字的关系一定要明确:

1、d是e 相对于 φn 的模反元素,φn = n-1,即 e * d mod n = 1.

2、m 小于 n,上面在讲迪菲赫尔曼密钥交换算法时,提到原根的问题,在RSA加密算法中,对m和n并没有原根条件的约束。只要满足m与n互为质数,n为质数,且m n就可以了。

OK,上面就是RSA加密算法的原理了,经过上面几个数学公式的狂轰乱炸,是不是有点迷乱了,给大家一些时间理一下,后面会和大家一起来验证RSA算法以及RSA为什么安全。

RSA加密解密过程

为了这道题把好几年前学的东西重新看了一遍,累觉不爱。。。

不清楚你了不了解RSA过程,先跟说一下吧

随机产生两个大素数p和q作为密钥对。此题:p=13,q=17,n =p*q=221

随机产生一个加密密钥e,使e 和(p-1)*(q-1)互素。此题:e=83

公钥就是(n,e)。此题:(221,83)

通过e*d mod (p-1)*(q-1)=1生成解密密钥d, ,n与d也要互素。此题:(d*83)≡1mod192

私钥就是(n,d)。此题:(221,155)

之后发送者用公钥加密明文M,得到密文C=M^e mod n

接受者利用私钥解密M=C^d mod n

求解d呢,就是求逆元,de = 1 mod n这种形式就称de于模数n说互逆元,可以看成de-ny=1,此题83e-192y=1.

用扩展的欧几里得算法。其实就是辗转相除

此题:

192=2*83+26

83=3*26+5

26=5*5+1

求到余数为1了,就往回写

1=26-5*5

=26-5*(83-3*26)

=(192-2*83)-5*(83-3*(192-2*83))

=16*192-37*83

则d=-37,取正后就是155.

记住,往回写的时候数不该换的一定不要换,比如第二步中的26,一定不能换成(83-5)/3,那样就求不出来了,最终一定要是192和83相关联的表达式。还有,最好保持好的书写格式,比如第一步2*83+26时第二步最好写成3*26+5而不是26*3+5,要不步骤比较多的话容易乱

RSA加密算法,求大神帮解答

如果用一段已经知道的明文,经过公钥加密,得到密文。现在已知明文密文和n, 是不是就可以通过解密的公式不断的幂运算求出私钥d呢?

RSA算法加密

RSA加密算法是一种典型的非对称加密算法,它基于大数的因式分解数学难题,它也是应用最广泛的非对称加密算法,于1978年由美国麻省理工学院(MIT)的三位学着:Ron Rivest、Adi Shamir 和 Leonard Adleman 共同提出。

它的原理较为简单,假设有消息发送方A和消息接收方B,通过下面的几个步骤,就可以完成消息的加密传递:

消息发送方A在本地构建密钥对,公钥和私钥;

消息发送方A将产生的公钥发送给消息接收方B;

B向A发送数据时,通过公钥进行加密,A接收到数据后通过私钥进行解密,完成一次通信;

反之,A向B发送数据时,通过私钥对数据进行加密,B接收到数据后通过公钥进行解密。

由于公钥是消息发送方A暴露给消息接收方B的,所以这种方式也存在一定的安全隐患,如果公钥在数据传输过程中泄漏,则A通过私钥加密的数据就可能被解密。

如果要建立更安全的加密消息传递模型,需要消息发送方和消息接收方各构建一套密钥对,并分别将各自的公钥暴露给对方,在进行消息传递时,A通过B的公钥对数据加密,B接收到消息通过B的私钥进行解密,反之,B通过A的公钥进行加密,A接收到消息后通过A的私钥进行解密。

当然,这种方式可能存在数据传递被模拟的隐患,但可以通过数字签名等技术进行安全性的进一步提升。由于存在多次的非对称加解密,这种方式带来的效率问题也更加严重。

密码学基础1:RSA算法原理全面解析

本节内容中可能用到的符号说明如下:

质数和合数: 质数是指除了平凡约数1和自身之外,没有其他约数的大于1的正整数。大于1的正整数中不是素数的则为合数。如 7、11 是质数,而 4、9 是合数。在 RSA 算法中主要用到了质数相关性质,质数可能是上帝留给人类的一把钥匙,许多数学定理和猜想都跟质数有关。

[定理1] 除法定理: 对任意整数 a 和 任意正整数 n,存在唯一的整数 q 和 r,满足 。其中, 称为除法的商,而 称为除法的余数。

整除: 在除法定理中,当余数 时,表示 a 能被 n 整除,或者说 a 是 n 的倍数,用符号 表示。

约数和倍数 : 对于整数 d 和 a,如果 ,且 ,则我们说 d 是 a 的约数,a 是 d 的倍数。

公约数: 对于整数 d,a,b,如果 d 是 a 的约数且 d 也是 b 的约数,则 d 是 a 和 b 的公约数。如 30 的约数有 1,2,3,5,6,10,15,30,而 24 的约数有 1,2,3,4,6,8,12,24,则 30 和 24 的公约数有 1,2,3,6。其中 1 是任意两个整数的公约数。

公约数的性质:

最大公约数: 两个整数最大的公约数称为最大公约数,用 来表示,如 30 和 24 的最大公约数是 6。 有一些显而易见的性质:

[定理2] 最大公约数定理: 如果 a 和 b 是不为0的整数,则 是 a 和 b 的线性组合集合 中的最小正元素。

由定理2可以得到一个推论:

[推论1] 对任意整数 a 和 b,如果 且 ,则 。

互质数: 如果两个整数 a 和 b 只有公因数 1,即 ,则我们就称这两个数是互质数(coprime)。比如 4 和 9 是互质数,但是 15 和 25 不是互质数。

互质数的性质:

欧几里得算法分为朴素欧几里得算法和扩展欧几里得算法,朴素法用于求两个数的最大公约数,而扩展的欧几里得算法则有更多广泛应用,如后面要提到的求一个数对特定模数的模逆元素等。

求两个非负整数的最大公约数最有名的是 辗转相除法,最早出现在伟大的数学家欧几里得在他的经典巨作《几何原本》中。辗转相除法算法求两个非负整数的最大公约数描述如下:

例如, ,在求解过程中,较大的数缩小,持续进行同样的计算可以不断缩小这两个数直至其中一个变成零。

欧几里得算法的python实现如下:

扩展欧几里得算法在 RSA 算法中求模反元素有很重要的应用,定义如下:

定义: 对于不全为 0 的非负整数 ,则必然存在整数对 ,使得

例如,a 为 3,b 为 8,则 。那么,必然存在整数对 ,满足 。简单计算可以得到 满足要求。

扩展欧几里得算法的python实现如下:

同余: 对于正整数 n 和 整数 a,b,如果满足 ,即 a-b 是 n 的倍数,则我们称 a 和 b 对模 n 同余,记号如下: 例如,因为 ,于是有 。

对于正整数 n,整数 ,如果 则我们可以得到如下性质:

譬如,因为 ,则可以推出 。

另外,若 p 和 q 互质,且 ,则可推出:

此外,模的四则运算还有如下一些性质,证明也比较简单,略去。

模逆元素: 对整数 a 和正整数 n,a 对模数 n 的模逆元素是指满足以下条件的整数 b。 a 对 模数 n 的 模逆元素不一定存在,a 对 模数 n 的模逆元素存在的充分必要条件是 a 和 n 互质,这个在后面我们会有证明。若模逆元素存在,也不是唯一的。例如 a=3,n=4,则 a 对模数 n 的模逆元素为 7 + 4k,即 7,11,15,...都是整数 3 对模数 4 的模逆元素。如果 a 和 n 不互质,如 a = 2,n = 4,则不存在模逆元素。

[推论2] 模逆元素存在的充分必要条件是整数 a 和 模数 n 互质。

[定理3] 唯一质数分解定理: 任何一个大于1的正整数 n 都可以 唯一分解 为一组质数的乘积,其中 都是自然数(包括0)。比如 6000 可以唯一分解为 。

由质数唯一分解定理可以得到一个推论: 质数有无穷多个 。

[定理4] 中国剩余定理(Chinese remainder theorem,CRT) ,最早见于《孙子算经》(中国南北朝数学著作,公元420-589年),叫物不知数问题,也叫韩信点兵问题。

翻译过来就是已知一个一元线性同余方程组求 x 的解:

宋朝著名数学家秦九韶在他的著作中给出了物不知数问题的解法,明朝的数学家程大位甚至编了一个《孙子歌诀》:

意思就是:将除以 3 的余数 2 乘以 70,将除以 5 的余数 3 乘以 21,将除以 7 的余数 2 乘以 15,最终将这三个数相加得到 。再将 233 除以 3,5,7 的最小公倍数 105 得到的余数 ,即为符合要求的最小正整数,实际上, 都符合要求。

物不知数问题解法本质

求解通项公式

中国剩余定理相当于给出了以下的一元线性同余方程组的有解的判定条件,并用构造法给出了解的具体形式。

模数 两两互质 ,则对任意的整数: ,方程组 有解,且解可以由如下构造方法得到:

并设 是除 以外的其他 个模数的乘积。

中国剩余定理通项公式证明

随着社会的发展,产品的更新速度也是越来越快,算法是方案的核心,保护开发者和消费者的权益刻不容缓,那么加密芯片在其中就扮演了重要的角色,如何选择加密芯片呢?
1.市面上加密芯片种类繁多,算法多种,加密芯片强度参差不齐,加密性能与算法、秘钥密切相关。常见的加密算法有对称算法,非对称算法,国密算法,大部分都是基于I2C、SPI或1-wire协议进行通信。加密芯片还是需要项目实际需求选择,比如对称加密算法的特点是计算量小、加密速度快、加密效率高等。
2.因为单片机软加密性能较弱且非常容易被复制,所以有了加密芯片的产生,大大增加了破解难度和生产成本。目前加密芯片广泛应用于车载电子、消费电子、美容医疗、工业控制、AI智能等行业。
3.韩国KEROS加密芯片专注加密领域十多年,高安全性、低成本,在加密保护领域受到了众多客户的高度赞扬及认可。KEROS采用先进的内置aes256安全引擎和加密功能,通过真动态数据交互并为系统中敏感信息的存储提供了安全的场所,有了它的保护电路,即使受到攻击,这些信息也可以保持安全。其封装SOP8,SOT23-6,TDFN-6集成I2C与1-wire协议满足不同应用需求。CK02AT、CK22AT、CK02AP、CK22AP支持1.8V-3.6V,256bit位秘钥长度,5bytes SN序列号,支持定制化免烧录,加密行业首选。关于rsa加密算法过程的介绍到此就结束了,感谢大家耐心阅读。

本文标签:rsa加密算法过程

产品列表
产品封装
友情链接