173 2438 5004
KEROS加密芯片——品牌直销 | 免费样品 | 技术支持
当前位置:网站首页 > 资讯中心 正文 资讯中心

非对称加密的过程

keros@mark 2022-11-07 资讯中心

本篇文章给大家谈谈非对称加密的过程以及对应的知识点,希望对各位有所帮助。

本文目录一览

非对称加密?

与对称加密算法不同,非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥(privatekey)。公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密;如果用私有密钥对数据进行加密,那么只有用对应的公开密钥才能解密。因为加密和解密使用的是两个不同的密钥,所以这种算法叫作非对称加密算法。

非对称加密算法实现机密信息交换的基本过程是:甲方生成一对密钥并将其中的一把作为公用密钥向其它方公开;得到该公用密钥的乙方使用该密钥对机密信息进行加密后再发送给甲方;甲方再用自己保存的另一把专用密钥对加密后的信息进行解密。甲方只能用其专用密钥解密由其公用密钥加密后的任何信息。

非对称加密算法的保密性比较好,它消除了最终用户交换密钥的需要,但加密和解密花费时间长、速度慢,它不适合于对文件加密而只适用于对少量数据进行加密。

经典的非对称加密算法如RSA算法等安全性都相当高.

非对称加密的典型应用是数字签名。

采用双钥密码系统的加密方法,在一个过程中使用两个密钥,一个用于加密,另一个用于解密,这种加密方法称为非对称加密,也称为公钥加密,因为其中一个密钥是公开的(另一个则需要保密)。

非对称加密的工作过程

如下图所示,甲乙之间使用非对称加密的方式完成了重要信息的安全传输。

1、乙方生成一对密钥(公钥和私钥)并将公钥向其它方公开。

2、得到该公钥的甲方使用该密钥对机密信息进行加密后再发送给乙方。

3、乙方再用自己保存的另一把专用密钥(私钥)对加密后的信息进行解密。乙方只能用其专用密钥(私钥)解密由对应的公钥加密后的信息。

在传输过程中,即使攻击者截获了传输的密文,并得到了乙的公钥,也无法破解密文,因为只有乙的私钥才能解密密文。

同样,如果乙要回复加密信息给甲,那么需要甲先公布甲的公钥给乙用于加密,甲自己保存甲的私钥用于解密。

什么是非对称加密?

它是和对称加密相对应的。

对称加密是比较原始的加密手段,它的特点就是加密的密码和解密的密码是同一个,比如说压缩软件就是,即你在压缩包上加的密码是什么,解密的密码也必须是这个。很显然,对称加密的好处是简单快捷,坏处是保密性不佳,你得告诉对方这个密码才行,即中间必须存在一个双方交流密码的过程,这就产生了被人窃去的危险——别人要是窃去了这个密码,那信息也就暴露了。

非对称加密则是,想要加密一个文件,需要生出两个密码,一个公开密码,一个私人密码。比如说你想让对方给你发涉密文件,你就用非对称加密工具生出公私两个密码,然后把公开密码发给他,对方就用这个公开密码对要传来的文档进行加密,然后把这个用公开密码加密的文件发给你,你就可以用你的私人密码进行解密。对方或别人仅仅知道公开密码,无法就此逆推出私人密码,所以能够保证私人密码的安全性,也就保证了传输过程的保密性,涉密文件不会就此被人解密(别人偷去无用,因为没有私人密码,无法解开)。这就是非对称加密在涉密文件传输的应用。

如果把上边这个过程反过来,非对称加密则会实现另一种用途,电子签名。比如说你发了一份文件,别人怎么会知道这个文件就是你发的,而不是别人冒用你的身份发的呢?就算有你的亲笔签名,可架不住有笔迹摹仿高手呢。这种时候,你就可以用你的私有密码对这份公开的文件进行加密,然后再把公开密码随同公布。如果别人用你公布的公开密码能够对此文件进行解密,如此便可以就此验证出加密者就是你本人,它的安全性很高,其保密性比真正的笔迹更要安全。

非对称应用的这两个过程可以各简缩成四个字,就是传输涉密文件时,“公(用密码)加私(人密码)解”,电子签名(验明发文者正身)时,是“私(人密码)加公(开密码)解”。

可以看出,非对称加密的好处就是保密性好,因为中间不需要双方交流私人密码的过程——只需要交流公开密码,而这个公开密码第三方偷去了没用(无法就它推导出私人密码),不好处也很明显,就是过程相对复杂,解密效率不及对称式的。

嗯,非对称加密对比对称加密,还有一个明显的不同点,即加密者自己无法解密。对方得到公开密码后,用它对文件进行加密后,这个加密后的文件,对方虽然是生成者,可他自己也没法解密。这一点和对称加密截然不同。

所以,要是需要双方或多方交流重要、敏感的信息,还是用非对称加密为宜。但若是自个儿保密用的,或是文件密级不是那么高的,综合看来大概用对称加密更好。

密码学基础(三):非对称加密(RSA算法原理)

加密和解密使用的是两个不同的秘钥,这种算法叫做非对称加密。非对称加密又称为公钥加密,RSA只是公钥加密的一种。

现实生活中有签名,互联网中也存在签名。签名的作用有两个,一个是身份验证,一个是数据完整性验证。数字签名通过摘要算法来确保接收到的数据没有被篡改,再通过签名者的私钥加密,只能使用对应的公钥解密,以此来保证身份的一致性。

数字证书是将个人信息和数字签名放到一起,经由CA机构的私钥加密之后生成。当然,不经过CA机构,由自己完成签名的证书称为自签名证书。CA机构作为互联网密码体系中的基础机构,拥有相当高级的安全防范能力,所有的证书体系中的基本假设或者前提就是CA机构的私钥不被窃取,一旦 CA J机构出事,整个信息链将不再安全。

CA证书的生成过程如下:

证书参与信息传递完成加密和解密的过程如下:

互质关系:互质是公约数只有1的两个整数,1和1互质,13和13就不互质了。

欧拉函数:表示任意给定正整数 n,在小于等于n的正整数之中,有多少个与 n 构成互质关系,其表达式为:

其中,若P为质数,则其表达式可以简写为:

情况一:φ(1)=1

1和任何数都互质,所以φ(1)=1;

情况二:n 是质数, φ(n)=n-1

因为 n 是质数,所以和小于自己的所有数都是互质关系,所以φ(n)=n-1;

情况三:如果 n 是质数的某一个次方,即 n = p^k ( p 为质数,k 为大于等于1的整数),则φ(n)=(p-1)p^(k-1)

因为 p 为质数,所以除了 p 的倍数之外,小于 n 的所有数都是 n 的质数;

情况四:如果 n 可以分解成两个互质的整数之积,n = p1 × p2,则φ(n) = φ(p1p2) = φ(p1)φ(p2)

情况五:基于情况四,如果 p1 和 p2 都是质数,且 n=p1 × p2,则φ(n) = φ(p1p2) = φ(p1)φ(p2)=(p1-1)(p2-1)

而 RSA 算法的基本原理就是欧拉函数中的第五种情况,即: φ(n)=(p1-1)(p2-1);

如果两个正整数 a 和 n 互质,那么一定可以找到整数 b,使得 ab-1 被 n 整除,或者说ab被n除的余数是1。这时,b就叫做a的“模反元素”。欧拉定理可以用来证明模反元素必然存在。

可以看到,a的 φ(n)-1 次方,就是a对模数n的模反元素。

n=p x q = 3233,3233写成二进制是110010100001,一共有12位,所以这个密钥就是12位。

在实际使用中,一般场景下选择1024位长度的数字,更高安全要求的场景下,选择2048位的数字,这里作为演示,选取p=61和q=53;

因为n、p、q都为质数,所以φ(n) = (p-1)(q-1)=60×52= 3120

注意,这里是和φ(n) 互互质而不是n!假设选择的值是17,即 e=17;

模反元素就是指有一个整数 d,可以使得 ed 被 φ(n) 除的余数为1。表示为:(ed-1)=φ(n) y -- 17d=3120y+1,算出一组解为(2753,15),即 d=2753,y=-15,也就是(17 2753-1)/3120=15。

注意,这里不能选择3119,否则公私钥相同??

公钥:(n,e)=(3233,2753)

私钥:(n,d)=(3233,17)

公钥是公开的,也就是说m=p*q=3233是公开的,那么怎么求e被?e是通过模反函数求得,17d=3120y+1,e是公开的等于17,这时候想要求d就要知道3120,也就是φ(n),也就是φ(3233),说白了,3233是公开的,你能对3233进行因数分解,你就能知道d,也就能破解私钥。

正常情况下,3233我们可以因数分解为61*53,但是对于很大的数字,人类只能通过枚举的方法来因数分解,所以RSA安全性的本质就是:对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。

人类已经分解的最大整数是:

这个人类已经分解的最大整数为232个十进制位,768个二进制位,比它更大的因数分解,还没有被报道过,因此目前被破解的最长RSA密钥就是768位。所以实际使用中的1024位秘钥基本安全,2048位秘钥绝对安全。

网上有个段子:

已经得出公私钥的组成:

公钥:(n,e)=(3233,2753)

私钥:(n,d)=(3233,17)

加密的过程就是

解密过程如下:

其中 m 是要被加密的数字,c 是加密之后输出的结果,且 m n ,其中解密过程一定成立可以证明的,这里省略证明过程。

总而言之,RSA的加密就是使用模反函数对数字进行加密和求解过程,在实际使用中因为 m n必须成立,所以就有两种加密方法:

对称加密存在虽然快速,但是存在致命的缺点就是秘钥需要传递。非对称加密虽然不需要传递秘钥就可以完成加密和解密,但是其致命缺点是速度不够快,不能用于高频率,高容量的加密场景。所以才有了两者的互补关系,在传递对称加密的秘钥时采用非对称加密,完成秘钥传送之后采用对称加密,如此就可以完美互补。

非对称加密算法

如果要给世界上所有算法按重要程度排个序,那我觉得“公钥加密算法”一定是排在最前边的,因为它是现代计算机通信安全的基石,保证了加密数据的安全。

01 对称加密算法

在非对称加密出现以前,普遍使用的是对称加密算法。所谓对称加密,就是加密和解密是相反的操作,对数据进行解密,只要按加密的方式反向操作一遍就可以获得对应的原始数据了,举一个简单的例子,如果要对字符串"abc"进行加密,先获取它们的ANSCII码为:97 98 99;密钥为+2,加密后的数据就是:99 100 101,将密文数据发送出去。接收方收到数据后对数据进行解密,每个数据减2,就得到了原文。当然这只是一个非常简单的例子,真实的对称加密算法会做得非常复杂,但这已经能够说明问题了。

这样的加密方法有什么缺点呢?首先缺点一:密钥传递困难;想想看如果两个人,分别是Bob和Alice,Bob要给Alice发消息,那Bob就要把密钥通过某种方式告诉Alice,有什么可靠的途径呢?打电话、发邮件、写信...等等方式好像都不靠谱,都有被窃取的风险,也只有两人见面后当面交流这一种方式了;缺点二:密钥数量会随着通信人数的增加而急剧增加,密钥管理将会是一个非常困难的事情。

02 非对称加密算法

1976年,两位美国计算机学家,提出了Diffie-Hellman密钥交换算法。这个算法的提出了一种崭新的构思,可以在不直接传递密钥的情况下,完成解密。这个算法启发了其他科学家,让人们认识到,加密和解密可以使用不同的规则,只要这两种规则之间存在某种对应的关系即可,这样就避免了直接传递密钥。这种新的加密模式就是“非对称加密算法”。

算法大致过程是这样的:

(1)乙方 生成两把密钥(公钥和私钥)。公钥是公开的,任何人都可以获得,私钥则是保密的。

(2)甲方获取乙方的公钥,然后用它对信息加密。

(3)乙方得到加密后的信息,用私钥解密。

如果公钥加密的信息只有私钥解得开,那么只要私钥不泄漏,通信就是安全的。

03 RSA非对称加密算法

1977年,三位数学家Rivest、Shamir 和 Adleman 设计了一种算法,可以实现非对称加密。这种算法用他们三个人的名字命名,叫做RSA算法。

从那时直到现在,RSA算法一直是最广为使用的"非对称加密算法"。毫不夸张地说,只要有计算机网络的地方,就有RSA算法。这种算法非常可靠,密钥越长,它就越难破解。根据已经披露的文献,目前被破解的最长RSA密钥是768个二进制位。也就是说,长度超过768位的密钥,还无法破解(至少没人公开宣布)。因此可以认为,1024位的RSA密钥基本安全,2048位的密钥极其安全。

公钥加密 - 私钥解密

只有私钥持有方可以正确解密,保证通信安全

私钥加密 - 公钥解密

所有人都可以正确解密,信息一定是公钥所对应的私钥持有者发出的,可以做签名

04 质数的前置知识

RSA的安全性是由大数的质因数分解保证的。下面是一些质数的性质:

1、任意两个质数构成素质关系,比如:11和17;

2、一个数是质数,另一个数只要不是前者的倍数,两者就构成素质关系,比如3和10;

3、如果两个数之中,较大的那个是质数,则两者构成互质关系,比如97和57;

4、1和任意一个自然数都是互质关系,比如1和99;

5、p是大于1的整数,则p和p-1构成互质关系,比如57和56;

6、p是大于1的奇数,则p和p-2构成互质关系,比如17和15

05 RSA密钥生成步骤

举个“栗子“,假如通信双方为Alice和Bob,Alice要怎么生成公钥和私钥呢?

St ep 1:随机选择两个不相等的质数p和q;

Alice选择了3和11。(实际情况中,选择的越大,就越难破解)

S tep 2 :计算p和q的乘积n;

n = 3*11 = 33,将33转化为二进制:100001,这个时候密钥长度就是6位。

Step 3 :计算n的欧拉函数φ(n);

因为n可以写为两个质数相乘的形式,欧拉函数对于可以写成两个质数形式有简单计算方式

φ(n) = (p-1)(q-1)

Step 4 :随机选择一个整数e,条件是1 e φ(n),且e与φ(n) 互质;

爱丽丝就在1到20之间,随机选择了3

Step 5 :计算e对于φ(n)的模反元素d

所谓模反元素,就是指有一个整数d,可以使得ed被φ(n)除的余数为1

Step 6 :将n和e封装成公钥,n和d封装成私钥;

在上面的例子中,n=33,e=3,d=7,所以公钥就是 (33,3),私钥就是(33, 7)。

密钥生成步骤中,一共出现了六个数字,分别为:

素质的两个数p和q,乘积n,欧拉函数φ(n),随机质数e,模反元素d

这六个数字之中,公钥用到了两个(n和e),其余四个数字都是不公开的,可以删除。其中最关键的是d,因为n和d组成了私钥,一旦d泄漏,就等于私钥泄漏。

那么,有无可能在已知n和e的情况下,推导出d?

(1)ed 1 (mod φ(n))。只有知道e和φ(n),才能算出d。

(2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。

(3)n=pq。只有将n因数分解,才能算出p和q。

结论是如果n可以被因数分解,d就可以算出,也就意味着私钥被破解。

BUT!

大整数的因数分解,是一件非常困难的事情。目前,除了暴力破解,还没有发现别的有效方法。

维基百科这样写道:

"对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。

假如有人找到一种快速因数分解的算法,那么RSA的可靠性就会极度下降。但找到这样的算法的可能性是非常小的。今天只有较短的RSA密钥才可能被暴力破解。到现在为止,世界上还没有任何可靠的攻击RSA算法的方式。

只要密钥长度足够长,用RSA加密的信息实际上是不能被解破的。"

06 RSA加密和解密过程

1、加密要用公钥(n,e)

假设鲍勃要向爱丽丝发送加密信息m,他就要用爱丽丝的公钥 (n,e) 对m进行加密。

所谓"加密",就是算出下式的c:

爱丽丝的公钥是 (33, 3),鲍勃的m假设是5,那么可以算出下面的等式:

于是,c等于26,鲍勃就把26发给了爱丽丝。

2、解密要用私钥(n,d)

爱丽丝拿到鲍勃发来的26以后,就用自己的私钥(33, 7) 进行解密。下面的等式一定成立(至于为什么一定成立,证明过程比较复杂,略):

也就是说,c的d次方除以n的余数为m。现在,c等于26,私钥是(33, 7),那么,爱丽丝算出:

因此,爱丽丝知道了鲍勃加密前的原文就是5。

至此,加密和解密的整个过程全部完成。整个过程可以看到,加密和解密使用不用的密钥,且不用担心密钥传递过程中的泄密问题,这一点上与对称加密有很大的不同。由于非对称加密要进行的计算步骤复杂,所以通常情况下,是两种算法混合使用的。

07 一些其它的

在Part 5的第五步,要求一定要解出二元一次方程的一对正整数解,如果不存在正整数解,这该怎么办?

扩展欧几里得算法给出了解答:

对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by;

第五步其实等价于:ed - kφ(n) = 1, e与φ(n)又互质,形式上完全与扩展欧几里得算法的一致,所以一定有整数解存在。

Reference:

随着社会的发展,产品的更新速度也是越来越快,算法是方案的核心,保护开发者和消费者的权益刻不容缓,那么加密芯片在其中就扮演了重要的角色,如何选择加密芯片呢?
1.市面上加密芯片种类繁多,算法多种,加密芯片强度参差不齐,加密性能与算法、秘钥密切相关。常见的加密算法有对称算法,非对称算法,国密算法,大部分都是基于I2C、SPI或1-wire协议进行通信。加密芯片还是需要项目实际需求选择,比如对称加密算法的特点是计算量小、加密速度快、加密效率高等。
2.因为单片机软加密性能较弱且非常容易被复制,所以有了加密芯片的产生,大大增加了破解难度和生产成本。目前加密芯片广泛应用于车载电子、消费电子、美容医疗、工业控制、AI智能等行业。
3.韩国KEROS加密芯片专注加密领域十多年,高安全性、低成本,在加密保护领域受到了众多客户的高度赞扬及认可。KEROS采用先进的内置aes256安全引擎和加密功能,通过真动态数据交互并为系统中敏感信息的存储提供了安全的场所,有了它的保护电路,即使受到攻击,这些信息也可以保持安全。其封装SOP8,SOT23-6,TDFN-6集成I2C与1-wire协议满足不同应用需求。CK02AT、CK22AT、CK02AP、CK22AP支持1.8V-3.6V,256bit位秘钥长度,5bytes SN序列号,支持定制化免烧录,加密行业首选。关于非对称加密的过程的介绍到此就结束了,感谢大家耐心阅读。

本文标签:非对称加密的过程

产品列表
产品封装
友情链接