173 2438 5004
KEROS加密芯片——品牌直销 | 免费样品 | 技术支持
当前位置:网站首页 > 资讯中心 正文 资讯中心

aes加密后出现转义字符

keros@mark 2022-10-17 资讯中心

很高兴和大家一起分享aes加密后出现转义字符的知识,希望对各位有所帮助。

本文目录一览

C# aes加密后返回的byte[]先Encoding.UTF8.GetString再Encoding.UTF8.GetBytes后和原来的值不一样

你自己都说了,加密之后的得出来不一样,你都加密了,那个byte[]中的数据早就变化得不像样了。

加密之后的数组不能直接转成字符串的,要转成16进制的字符

iOS aes解密遇到的问题

/

去掉解密出来字符串后面的一些转义字符

如果你想要测试是不是我们得到的解密字符串真的有一些我们看不到的转义字符,我们可以进行字符串的截取

你还可以用这种方式进行测试,你会发现这个是可以的

密码学基础(二):对称加密

加密和解密使用相同的秘钥称为对称加密。

DES:已经淘汰

3DES:相对于DES有所加强,但是仍然存在较大风险

aes:全新的对称加密算法。

特点决定使用场景,对称加密拥有如下特点:

速度快,可用于频率很高的加密场景。

使用同一个秘钥进行加密和解密。

可选按照128、192、256位为一组的加密方式,加密后的输出值为所选分组位数的倍数。密钥的长度不同,推荐加密轮数也不同,加密强度也更强。

例如:

aes加密结果的长度由原字符串长度决定:一个字符为1byte=4bit,一个字符串为n+1byte,因为最后一位为'\0',所以当字符串长度小于等于15时,aes128得到的16进制结果为32位,也就是32 4=128byte,当长度超过15时,就是64位为128 2byte。

因为对称加密速度快的特点,对称加密被广泛运用在各种加密场所中。但是因为其需要传递秘钥,一旦秘钥被截获或者泄露,其加密就会玩完全破解,所以aes一般和RSA一起使用。

因为RSA不用传递秘钥,加密速度慢,所以一般使用RSA加密aes中锁使用的秘钥后,再传递秘钥,保证秘钥的安全。秘钥安全传递成功后,一直使用aes对会话中的信息进行加密,以此来解决aes和RSA的缺点并完美发挥两者的优点,其中相对经典的例子就是HTTPS加密,后文会专门研究。

本文针对ECB模式下的aes算法进行大概讲解,针对每一步的详细算法不再该文讨论范围内。

128位的明文被分成16个字节的明文矩阵,然后将明文矩阵转化成状态矩阵,以“abcdefghijklmnop”的明文为例:

同样的,128位密钥被分成16组的状态矩阵。与明文不同的是,密文会以列为单位,生成最初的4x8x4=128的秘钥,也就是一个组中有4个元素,每个元素由每列中的4个秘钥叠加而成,其中矩阵中的每个秘钥为1个字节也就是8位。

生成初始的w[0]、w[1]、w[2]、w[3]原始密钥之后,通过密钥编排函数,该密钥矩阵被扩展成一个44个组成的序列W[0],W[1], … ,W[43]。该序列的前4个元素W[0],W[1],W[2],W[3]是原始密钥,用于加密运算中的初始密钥加,后面40个字分为10组,每组4个32位的字段组成,总共为128位,分别用于10轮加密运算中的轮密钥加密,如下图所示:

之所以把这一步单独提出来,是因为ECB和CBC模式中主要的区别就在这一步。

ECB模式中,初始秘钥扩展后生成秘钥组后(w0-w43),明文根据当前轮数取出w[i,i+3]进行加密操作。

CBC模式中,则使用前一轮的密文(明文加密之后的值)和当前的明文进行异或操作之后再进行加密操作。如图所示:

根据不同位数分组,官方推荐的加密轮数:

轮操作加密的第1轮到第9轮的轮函数一样,包括4个操作:字节代换、行位移、列混合和轮密钥加。最后一轮迭代不执行列混合。

当第一组加密完成时,后面的组循环进行加密操作知道所有的组都完成加密操作。

一般会将结果转化成base64位,此时在iOS中应该使用base64编码的方式进行解码操作,而不是UTF-8。

base64是一种编码方式,常用语传输8bit字节码。其编码原理如下所示:

将原数据按照3个字节取为一组,即为3x8=24位

将3x8=24的数据分为4x6=24的数据,也就是分为了4组

将4个组中的数据分别在高位补上2个0,也就成了8x4=32,所以原数据增大了三分之一。

根据base64编码表对数据进行转换,如果要编码的二进制数据不是3的倍数,最后会剩下1个或2个字节怎么办,Base64用\x00字节在末尾补足后,再在编码的末尾加上1个或2个=号,表示补了多少字节,解码的时候,会自动去掉。

举个栗子:Man最后的结果就是TWFu。

计算机中所有的数据都是以0和1的二进制来存储,而所有的文字都是通过ascii表转化而来进而显示成对应的语言。但是ascii表中存在许多不可见字符,这些不可见字符在数据传输时,有可能经过不同硬件上各种类型的路由,在转义时容易发生错误,所以规定了64个可见字符(a-z、A-Z、0-9、+、/),通过base64转码之后,所有的二进制数据都是可见的。

ECB和CBC是两种加密工作模式。其相同点都是在开始轮加密之前,将明文和密文按照128/192/256进行分组。以128位为例,明文和密文都分为16组,每组1个字节为8位。

ECB工作模式中,每一组的明文和密文相互独立,每一组的明文通过对应该组的密文加密后生成密文,不影响其他组。

CBC工作模式中,后一组的明文在加密之前先使用前一组的密文进行异或运算后再和对应该组的密文进行加密操作生成密文。

为简单的分组加密。将明文和密文分成若干组后,使用密文对明文进行加密生成密文

CBC

加密:

解密:

aes加密算法解密后跟原明文不一样谁知道怎么回事

第一确定加密后的文件长度和加密前长度一致

因为如果一个字符‘a'加密后成了’\0‘的话,你这是用了strcat这样的函数就会默认把这个'\0'去掉的,

所以不要用strcat之类的函数,

要用指针。看看是不是这个问题。。。

随着社会的发展,产品的更新速度也是越来越快,算法是方案的核心,保护开发者和消费者的权益刻不容缓,那么加密芯片在其中就扮演了重要的角色,如何选择加密芯片呢?
1.市面上加密芯片种类繁多,算法多种,加密芯片强度参差不齐,加密性能与算法、秘钥密切相关。常见的加密算法有对称算法,非对称算法,国密算法,大部分都是基于I2C、SPI或1-wire协议进行通信。加密芯片还是需要项目实际需求选择,比如对称加密算法的特点是计算量小、加密速度快、加密效率高等。
2.因为单片机软加密性能较弱且非常容易被复制,所以有了加密芯片的产生,大大增加了破解难度和生产成本。目前加密芯片广泛应用于车载电子、消费电子、美容医疗、工业控制、AI智能等行业。
3.韩国KEROS加密芯片专注加密领域十多年,高安全性、低成本,在加密保护领域受到了众多客户的高度赞扬及认可。KEROS采用先进的内置aes256安全引擎和加密功能,通过真动态数据交互并为系统中敏感信息的存储提供了安全的场所,有了它的保护电路,即使受到攻击,这些信息也可以保持安全。其封装SOP8,SOT23-6,TDFN-6集成I2C与1-wire协议满足不同应用需求。CK02AT、CK22AT、CK02AP、CK22AP支持1.8V-3.6V,256bit位秘钥长度,5bytes SN序列号,支持定制化免烧录,加密行业首选。关于aes加密后出现转义字符的介绍到此就结束了,感谢大家耐心阅读。

本文标签:aes加密后出现转义字符

产品列表
产品封装
友情链接